-
Notifications
You must be signed in to change notification settings - Fork 34
Open
Description
Summary
Add bond dimension cutoff capability to enable approximate decoding with polynomial computational cost instead of the current exponential exact solving.
Current Behavior
The tensor network decoder currently solves problems exactly with exponential computational cost, making it impractical for larger quantum error correction codes and error cycles.
Requested Feature
Add a bond_dimension or max_bond_dim parameter to enable approximate decoding with polynomial computational cost.
Proposed API:
decoder = qec.get_decoder(
"tensor_network_decoder",
H,
logical_obs=logicals,
noise_model=noise_model,
contract_noise_model=True,
bond_dimension=64 # New parameter
)Benefits
- Enable scaling to larger quantum codes
- Allow cost vs. performance trade-offs
Use Cases
- Benchmarking decoder accuracy vs. bond dimension
- Large-scale quantum error correction simulations
Environment
- Package:
cudaq-qec[tensor-network-decoder]
Metadata
Metadata
Assignees
Labels
No labels