@@ -14,12 +14,15 @@ def kernel(a, b, c):
1414 c [tid ] = a [tid ] + b [tid ]
1515
1616
17- def get_numba_stream (launch ):
17+ def get_numba_stream (launch : nvbench . Launch ):
1818 return cuda .external_stream (launch .get_stream ().addressof ())
1919
2020
21- def add_two (state ):
22- # state.skip("Skipping this benchmark for no reason")
21+ def skipit (state : nvbench .State ) -> None :
22+ state .skip ("Skipping this benchmark for no reason" )
23+
24+
25+ def add_two (state : nvbench .State ):
2326 N = state .get_int64 ("elements" )
2427 a = cuda .to_device (np .random .random (N ))
2528 c = cuda .device_array_like (a )
@@ -44,7 +47,7 @@ def kernel_launcher(launch):
4447 state .exec (kernel_launcher , batched = True , sync = True )
4548
4649
47- def add_float (state ):
50+ def add_float (state : nvbench . State ):
4851 N = state .get_int64 ("elements" )
4952 v = state .get_float64 ("v" )
5053 name = state .get_string ("name" )
@@ -75,7 +78,7 @@ def kernel_launcher(launch):
7578 state .exec (kernel_launcher , batched = True , sync = True )
7679
7780
78- def add_three (state ):
81+ def add_three (state : nvbench . State ):
7982 N = state .get_int64 ("elements" )
8083 a = cuda .to_device (np .random .random (N ).astype (np .float32 ))
8184 b = cuda .to_device (np .random .random (N ).astype (np .float32 ))
@@ -105,13 +108,10 @@ def register_benchmarks():
105108 nvbench .register (add_float )
106109 .add_float64_axis ("v" , [0.1 , 0.3 ])
107110 .add_string_axis ("name" , ["Anne" , "Lynda" ])
108- .add_int64_axis ("elements" , [2 ** pow2 for pow2 in range (20 , 23 )])
109- )
110- (
111- nvbench .register (add_three ).add_int64_axis (
112- "elements" , [2 ** pow2 for pow2 in range (20 , 22 )]
113- )
111+ .add_int64_power_of_two_axis ("elements" , range (20 , 23 ))
114112 )
113+ (nvbench .register (add_three ).add_int64_power_of_two_axis ("elements" , range (20 , 22 )))
114+ nvbench .register (skipit )
115115
116116
117117if __name__ == "__main__" :
0 commit comments