|
| 1 | +# Copyright 2025 NVIDIA Corporation |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 with the LLVM exception |
| 4 | +# (the "License"); you may not use this file except in compliance with |
| 5 | +# the License. |
| 6 | +# |
| 7 | +# You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://llvm.org/foundation/relicensing/LICENSE.txt |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, software |
| 12 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | +# See the License for the specific language governing permissions and |
| 15 | +# limitations under the License. |
| 16 | + |
| 17 | +import ctypes |
| 18 | +import sys |
| 19 | +from typing import Dict, Optional, Tuple |
| 20 | + |
| 21 | +import cuda.cccl.headers as headers |
| 22 | +import cuda.core.experimental as core |
| 23 | +import cuda.nvbench as nvbench |
| 24 | + |
| 25 | + |
| 26 | +def as_core_Stream(cs: nvbench.CudaStream) -> core.Stream: |
| 27 | + return core.Stream.from_handle(cs.addressof()) |
| 28 | + |
| 29 | + |
| 30 | +def make_sleep_kernel(): |
| 31 | + """JITs sleep_kernel(seconds)""" |
| 32 | + src = r""" |
| 33 | +#include <cuda/std/cstdint> |
| 34 | +#include <cuda/std/chrono> |
| 35 | +
|
| 36 | +// Each launched thread just sleeps for `seconds`. |
| 37 | +__global__ void sleep_kernel(double seconds) { |
| 38 | + namespace chrono = ::cuda::std::chrono; |
| 39 | + using hr_clock = chrono::high_resolution_clock; |
| 40 | +
|
| 41 | + auto duration = static_cast<cuda::std::int64_t>(seconds * 1e9); |
| 42 | + const auto ns = chrono::nanoseconds(duration); |
| 43 | +
|
| 44 | + const auto start = hr_clock::now(); |
| 45 | + const auto finish = start + ns; |
| 46 | +
|
| 47 | + auto now = hr_clock::now(); |
| 48 | + while (now < finish) |
| 49 | + { |
| 50 | + now = hr_clock::now(); |
| 51 | + } |
| 52 | +} |
| 53 | +""" |
| 54 | + incl = headers.get_include_paths() |
| 55 | + opts = core.ProgramOptions(include_path=str(incl.libcudacxx)) |
| 56 | + prog = core.Program(src, code_type="c++", options=opts) |
| 57 | + mod = prog.compile("cubin", name_expressions=("sleep_kernel",)) |
| 58 | + return mod.get_kernel("sleep_kernel") |
| 59 | + |
| 60 | + |
| 61 | +def no_axes(state: nvbench.State): |
| 62 | + state.set_min_samples(1000) |
| 63 | + sleep_dur = 1e-3 |
| 64 | + krn = make_sleep_kernel() |
| 65 | + launch_config = core.LaunchConfig(grid=1, block=1, shmem_size=0) |
| 66 | + |
| 67 | + print(f"Stopping criterion used: {state.get_stopping_criterion()}") |
| 68 | + |
| 69 | + def launcher(launch: nvbench.Launch): |
| 70 | + s = as_core_Stream(launch.get_stream()) |
| 71 | + core.launch(s, launch_config, krn, sleep_dur) |
| 72 | + |
| 73 | + state.exec(launcher) |
| 74 | + |
| 75 | + |
| 76 | +def tags(state: nvbench.State): |
| 77 | + state.set_min_samples(1000) |
| 78 | + sleep_dur = 1e-3 |
| 79 | + krn = make_sleep_kernel() |
| 80 | + launch_config = core.LaunchConfig(grid=1, block=1, shmem_size=0) |
| 81 | + |
| 82 | + sync_flag = bool(state.get_int64("Sync")) |
| 83 | + batched_flag = bool(state.get_int64("Batched")) |
| 84 | + |
| 85 | + def launcher(launch: nvbench.Launch): |
| 86 | + s = as_core_Stream(launch.get_stream()) |
| 87 | + core.launch(s, launch_config, krn, sleep_dur) |
| 88 | + |
| 89 | + state.exec(launcher, sync=sync_flag, batched=batched_flag) |
| 90 | + |
| 91 | + |
| 92 | +def single_float64_axis(state: nvbench.State): |
| 93 | + # get axis value, or default |
| 94 | + default_sleep_dur = 3.14e-4 |
| 95 | + sleep_dur = state.get_float64_or_default("Duration", default_sleep_dur) |
| 96 | + krn = make_sleep_kernel() |
| 97 | + launch_config = core.LaunchConfig(grid=1, block=1, shmem_size=0) |
| 98 | + |
| 99 | + def launcher(launch: nvbench.Launch): |
| 100 | + s = as_core_Stream(launch.get_stream()) |
| 101 | + core.launch(s, launch_config, krn, sleep_dur) |
| 102 | + |
| 103 | + state.exec(launcher) |
| 104 | + |
| 105 | + |
| 106 | +def default_value(state: nvbench.State): |
| 107 | + single_float64_axis(state) |
| 108 | + |
| 109 | + |
| 110 | +def make_copy_kernel(in_type: Optional[str] = None, out_type: Optional[str] = None): |
| 111 | + src = r""" |
| 112 | +#include <cuda/std/cstdint> |
| 113 | +#include <cuda/std/cstddef> |
| 114 | +/*! |
| 115 | + * Naive copy of `n` values from `in` -> `out`. |
| 116 | + */ |
| 117 | +template <typename T, typename U> |
| 118 | +__global__ void copy_kernel(const T *in, U *out, ::cuda::std::size_t n) |
| 119 | +{ |
| 120 | + const auto init = blockIdx.x * blockDim.x + threadIdx.x; |
| 121 | + const auto step = blockDim.x * gridDim.x; |
| 122 | +
|
| 123 | + for (auto i = init; i < n; i += step) |
| 124 | + { |
| 125 | + out[i] = static_cast<U>(in[i]); |
| 126 | + } |
| 127 | +} |
| 128 | +""" |
| 129 | + incl = headers.get_include_paths() |
| 130 | + opts = core.ProgramOptions(include_path=str(incl.libcudacxx)) |
| 131 | + prog = core.Program(src, code_type="c++", options=opts) |
| 132 | + if in_type is None: |
| 133 | + in_type = "::cuda::std::int32_t" |
| 134 | + if out_type is None: |
| 135 | + out_type = "::cuda::std::int32_t" |
| 136 | + instance_name = f"copy_kernel<{in_type}, {out_type}>" |
| 137 | + mod = prog.compile("cubin", name_expressions=(instance_name,)) |
| 138 | + return mod.get_kernel(instance_name) |
| 139 | + |
| 140 | + |
| 141 | +def copy_sweep_grid_shape(state: nvbench.State): |
| 142 | + block_size = state.get_int64("BlockSize") |
| 143 | + num_blocks = state.get_int64("NumBlocks") |
| 144 | + |
| 145 | + # Number of int32 elements in 256MiB |
| 146 | + nbytes = 256 * 1024 * 1024 |
| 147 | + num_values = nbytes // ctypes.sizeof(ctypes.c_int32(0)) |
| 148 | + |
| 149 | + state.add_element_count(num_values) |
| 150 | + state.add_global_memory_reads(nbytes) |
| 151 | + state.add_global_memory_writes(nbytes) |
| 152 | + |
| 153 | + dev_id = state.get_device() |
| 154 | + alloc_s = as_core_Stream(state.get_stream()) |
| 155 | + input_buf = core.DeviceMemoryResource(dev_id).allocate(nbytes, alloc_s) |
| 156 | + output_buf = core.DeviceMemoryResource(dev_id).allocate(nbytes, alloc_s) |
| 157 | + |
| 158 | + krn = make_copy_kernel() |
| 159 | + launch_config = core.LaunchConfig(grid=num_blocks, block=block_size, shmem_size=0) |
| 160 | + |
| 161 | + def launcher(launch: nvbench.Launch): |
| 162 | + s = as_core_Stream(launch.get_stream()) |
| 163 | + core.launch(s, launch_config, krn, input_buf, output_buf, num_values) |
| 164 | + |
| 165 | + state.exec(launcher) |
| 166 | + |
| 167 | + |
| 168 | +def copy_type_sweep(state: nvbench.State): |
| 169 | + type_id = state.get_int64("TypeID") |
| 170 | + |
| 171 | + types_map: Dict[int, Tuple[type, str]] = { |
| 172 | + 0: (ctypes.c_uint8, "cuda::std::uint8_t"), |
| 173 | + 1: (ctypes.c_uint16, "cuda::std::uint16_t"), |
| 174 | + 2: (ctypes.c_uint32, "cuda::std::uint32_t"), |
| 175 | + 3: (ctypes.c_uint64, "cuda::std::uint64_t"), |
| 176 | + 4: (ctypes.c_float, "float"), |
| 177 | + 5: (ctypes.c_double, "double"), |
| 178 | + } |
| 179 | + |
| 180 | + value_ctype, value_cuda_t = types_map[type_id] |
| 181 | + state.add_summary("Type", value_cuda_t) |
| 182 | + |
| 183 | + # Number of elements in 256MiB |
| 184 | + nbytes = 256 * 1024 * 1024 |
| 185 | + num_values = nbytes // ctypes.sizeof(value_ctype) |
| 186 | + |
| 187 | + state.add_element_count(num_values) |
| 188 | + state.add_global_memory_reads(nbytes) |
| 189 | + state.add_global_memory_writes(nbytes) |
| 190 | + |
| 191 | + dev_id = state.get_device() |
| 192 | + alloc_s = as_core_Stream(state.get_stream()) |
| 193 | + input_buf = core.DeviceMemoryResource(dev_id).allocate(nbytes, alloc_s) |
| 194 | + output_buf = core.DeviceMemoryResource(dev_id).allocate(nbytes, alloc_s) |
| 195 | + |
| 196 | + krn = make_copy_kernel(value_cuda_t, value_cuda_t) |
| 197 | + launch_config = core.LaunchConfig(grid=256, block=256, shmem_size=0) |
| 198 | + |
| 199 | + def launcher(launch: nvbench.Launch): |
| 200 | + s = as_core_Stream(launch.get_stream()) |
| 201 | + core.launch(s, launch_config, krn, input_buf, output_buf, num_values) |
| 202 | + |
| 203 | + state.exec(launcher) |
| 204 | + |
| 205 | + |
| 206 | +if __name__ == "__main__": |
| 207 | + # Benchmark without axes |
| 208 | + simple_b = nvbench.register(no_axes) |
| 209 | + simple_b.set_stopping_criterion("entropy") |
| 210 | + simple_b.set_criterion_param_int64("unused_int", 100) |
| 211 | + |
| 212 | + tags_b = nvbench.register(tags) |
| 213 | + tags_b.add_int64_axis("Sync", [0, 1]) |
| 214 | + tags_b.add_int64_axis("Batched", [0, 1]) |
| 215 | + |
| 216 | + # benchmark with no axes, that uses default value |
| 217 | + default_b = nvbench.register(default_value) |
| 218 | + default_b.set_min_samples(7) |
| 219 | + |
| 220 | + # specify axis |
| 221 | + axes_b = nvbench.register(single_float64_axis).add_float64_axis( |
| 222 | + "Duration", [7e-5, 1e-4, 5e-4] |
| 223 | + ) |
| 224 | + axes_b.set_timeout(20) |
| 225 | + axes_b.set_skip_time(1e-5) |
| 226 | + axes_b.set_throttle_threshold(0.2) |
| 227 | + axes_b.set_throttle_recovery_delay(0.1) |
| 228 | + |
| 229 | + copy1_bench = nvbench.register(copy_sweep_grid_shape) |
| 230 | + copy1_bench.add_int64_power_of_two_axis("BlockSize", range(6, 10, 2)) |
| 231 | + copy1_bench.add_int64_axis("NumBlocks", [2**x for x in range(6, 10, 2)]) |
| 232 | + |
| 233 | + copy2_bench = nvbench.register(copy_type_sweep) |
| 234 | + copy2_bench.add_int64_axis("TypeID", range(0, 6)) |
| 235 | + |
| 236 | + nvbench.run_all_benchmarks(sys.argv) |
0 commit comments