|
| 1 | +import sys |
| 2 | + |
| 3 | +import cuda.nvbench as nvbench |
| 4 | +import cupy as cp |
| 5 | + |
| 6 | + |
| 7 | +def as_cp_ExternalStream( |
| 8 | + cs: nvbench.CudaStream, dev_id: int = -1 |
| 9 | +) -> cp.cuda.ExternalStream: |
| 10 | + h = cs.addressof() |
| 11 | + return cp.cuda.ExternalStream(h, dev_id) |
| 12 | + |
| 13 | + |
| 14 | +def cupy_extract_by_mask(state: nvbench.State): |
| 15 | + n_cols = state.getInt64("numCols") |
| 16 | + n_rows = state.getInt64("numRows") |
| 17 | + |
| 18 | + dev_id = state.getDevice() |
| 19 | + cp_s = as_cp_ExternalStream(state.getStream(), dev_id) |
| 20 | + |
| 21 | + state.collectCUPTIMetrics() |
| 22 | + state.addElementCount(n_rows * n_cols, "# Elements") |
| 23 | + state.addGlobalMemoryReads( |
| 24 | + n_rows * n_cols * (cp.dtype(cp.int32).itemsize + cp.dtype("?").itemsize) |
| 25 | + ) |
| 26 | + state.addGlobalMemoryWrites(n_rows * n_cols * (cp.dtype(cp.int32).itemsize)) |
| 27 | + |
| 28 | + with cp_s: |
| 29 | + X = cp.full((n_cols, n_rows), fill_value=3, dtype=cp.int32) |
| 30 | + mask = cp.ones((n_cols, n_rows), dtype="?") |
| 31 | + _ = X[mask] |
| 32 | + |
| 33 | + def launcher(launch: nvbench.Launch): |
| 34 | + with as_cp_ExternalStream(launch.getStream(), dev_id): |
| 35 | + _ = X[mask] |
| 36 | + |
| 37 | + state.exec(launcher, sync=True) |
| 38 | + |
| 39 | + |
| 40 | +if __name__ == "__main__": |
| 41 | + b = nvbench.register(cupy_extract_by_mask) |
| 42 | + b.addInt64Axis("numCols", [1024, 2048, 4096, 2 * 4096]) |
| 43 | + b.addInt64Axis("numRows", [1024, 2048, 4096, 2 * 4096]) |
| 44 | + |
| 45 | + nvbench.run_all_benchmarks(sys.argv) |
0 commit comments