|
| 1 | +import ctypes |
| 2 | +import sys |
| 3 | +from typing import Optional |
| 4 | + |
| 5 | +import cuda.cccl.headers as headers |
| 6 | +import cuda.core.experimental as core |
| 7 | +import cuda.nvbench as nvbench |
| 8 | + |
| 9 | + |
| 10 | +def make_fill_kernel(data_type: Optional[str] = None): |
| 11 | + src = r""" |
| 12 | +#include <cuda/std/cstdint> |
| 13 | +#include <cuda/std/cstddef> |
| 14 | +/*! |
| 15 | + * Naive setting of values in buffer |
| 16 | + */ |
| 17 | +template <typename T> |
| 18 | +__global__ void fill_kernel(T *buf, T v, ::cuda::std::size_t n) |
| 19 | +{ |
| 20 | + const auto init = blockIdx.x * blockDim.x + threadIdx.x; |
| 21 | + const auto step = blockDim.x * gridDim.x; |
| 22 | +
|
| 23 | + for (auto i = init; i < n; i += step) |
| 24 | + { |
| 25 | + buf[i] = v; |
| 26 | + } |
| 27 | +} |
| 28 | +""" |
| 29 | + incl = headers.get_include_paths() |
| 30 | + opts = core.ProgramOptions(include_path=str(incl.libcudacxx)) |
| 31 | + prog = core.Program(src, code_type="c++", options=opts) |
| 32 | + if data_type is None: |
| 33 | + data_type = "::cuda::std::int32_t" |
| 34 | + instance_name = f"fill_kernel<{data_type}>" |
| 35 | + mod = prog.compile("cubin", name_expressions=(instance_name,)) |
| 36 | + return mod.get_kernel(instance_name) |
| 37 | + |
| 38 | + |
| 39 | +def synchronizing_bench(state: nvbench.State): |
| 40 | + n_values = 64 * 1024 * 1024 |
| 41 | + n_bytes = n_values * ctypes.sizeof(ctypes.c_int32(0)) |
| 42 | + |
| 43 | + dev = core.Device(state.getDevice()) |
| 44 | + dev.set_current() |
| 45 | + |
| 46 | + alloc_stream = dev.create_stream(state.getStream()) |
| 47 | + buffer = core.DeviceMemoryResource(dev).allocate(n_bytes, alloc_stream) |
| 48 | + |
| 49 | + state.addElementCount(n_values, "Items") |
| 50 | + state.addGlobalMemoryWrites(n_bytes, "Size") |
| 51 | + |
| 52 | + krn = make_fill_kernel() |
| 53 | + launch_config = core.LaunchConfig(grid=256, block=256, shmem_size=0) |
| 54 | + |
| 55 | + def launcher(launch: nvbench.Launch): |
| 56 | + dev = core.Device() |
| 57 | + dev.set_current() |
| 58 | + |
| 59 | + s = dev.create_stream(launch.getStream()) |
| 60 | + core.launch(s, launch_config, krn, buffer, 0, n_values) |
| 61 | + s.sync() |
| 62 | + |
| 63 | + # since launcher contains synchronization point, |
| 64 | + # setting sync=True is required to avoid a deadlock |
| 65 | + state.exec(launcher, sync=True) |
| 66 | + |
| 67 | + |
| 68 | +if __name__ == "__main__": |
| 69 | + nvbench.register(synchronizing_bench) |
| 70 | + nvbench.run_all_benchmarks(sys.argv) |
0 commit comments