|
| 1 | +import ctypes |
| 2 | +import sys |
| 3 | +from typing import Optional |
| 4 | + |
| 5 | +import cuda.cccl.headers as headers |
| 6 | +import cuda.core.experimental as core |
| 7 | +import cuda.nvbench as nvbench |
| 8 | + |
| 9 | + |
| 10 | +def make_sleep_kernel(): |
| 11 | + """JITs sleep_kernel(seconds)""" |
| 12 | + src = r""" |
| 13 | +#include <cuda/std/cstdint> |
| 14 | +#include <cuda/std/chrono> |
| 15 | +
|
| 16 | +// Each launched thread just sleeps for `seconds`. |
| 17 | +__global__ void sleep_kernel(double seconds) { |
| 18 | + namespace chrono = ::cuda::std::chrono; |
| 19 | + using hr_clock = chrono::high_resolution_clock; |
| 20 | +
|
| 21 | + auto duration = static_cast<cuda::std::int64_t>(seconds * 1e9); |
| 22 | + const auto ns = chrono::nanoseconds(duration); |
| 23 | +
|
| 24 | + const auto start = hr_clock::now(); |
| 25 | + const auto finish = start + ns; |
| 26 | +
|
| 27 | + auto now = hr_clock::now(); |
| 28 | + while (now < finish) |
| 29 | + { |
| 30 | + now = hr_clock::now(); |
| 31 | + } |
| 32 | +} |
| 33 | +""" |
| 34 | + incl = headers.get_include_paths() |
| 35 | + opts = core.ProgramOptions(include_path=str(incl.libcudacxx)) |
| 36 | + prog = core.Program(src, code_type="c++", options=opts) |
| 37 | + mod = prog.compile("cubin", name_expressions=("sleep_kernel",)) |
| 38 | + return mod.get_kernel("sleep_kernel") |
| 39 | + |
| 40 | + |
| 41 | +def simple(state: nvbench.State): |
| 42 | + state.setMinSamples(1000) |
| 43 | + sleep_dur = 1e-3 |
| 44 | + krn = make_sleep_kernel() |
| 45 | + launch_config = core.LaunchConfig(grid=1, block=1, shmem_size=0) |
| 46 | + |
| 47 | + def launcher(launch: nvbench.Launch): |
| 48 | + dev = core.Device() |
| 49 | + dev.set_current() |
| 50 | + s = dev.create_stream(launch.getStream()) |
| 51 | + |
| 52 | + core.launch(s, launch_config, krn, sleep_dur) |
| 53 | + |
| 54 | + state.exec(launcher) |
| 55 | + |
| 56 | + |
| 57 | +def single_float64_axis(state: nvbench.State): |
| 58 | + # get axis value, or default |
| 59 | + sleep_dur = state.getFloat64("Duration", 3.14e-4) |
| 60 | + krn = make_sleep_kernel() |
| 61 | + launch_config = core.LaunchConfig(grid=1, block=1, shmem_size=0) |
| 62 | + |
| 63 | + def launcher(launch: nvbench.Launch): |
| 64 | + dev = core.Device() |
| 65 | + dev.set_current() |
| 66 | + s = dev.create_stream(launch.getStream()) |
| 67 | + |
| 68 | + core.launch(s, launch_config, krn, sleep_dur) |
| 69 | + |
| 70 | + state.exec(launcher) |
| 71 | + |
| 72 | + |
| 73 | +def default_value(state: nvbench.State): |
| 74 | + single_float64_axis(state) |
| 75 | + |
| 76 | + |
| 77 | +def make_copy_kernel(in_type: Optional[str] = None, out_type: Optional[str] = None): |
| 78 | + src = r""" |
| 79 | +#include <cuda/std/cstdint> |
| 80 | +#include <cuda/std/cstddef> |
| 81 | +/*! |
| 82 | + * Naive copy of `n` values from `in` -> `out`. |
| 83 | + */ |
| 84 | +template <typename T, typename U> |
| 85 | +__global__ void copy_kernel(const T *in, U *out, ::cuda::std::size_t n) |
| 86 | +{ |
| 87 | + const auto init = blockIdx.x * blockDim.x + threadIdx.x; |
| 88 | + const auto step = blockDim.x * gridDim.x; |
| 89 | +
|
| 90 | + for (auto i = init; i < n; i += step) |
| 91 | + { |
| 92 | + out[i] = static_cast<U>(in[i]); |
| 93 | + } |
| 94 | +} |
| 95 | +""" |
| 96 | + incl = headers.get_include_paths() |
| 97 | + opts = core.ProgramOptions(include_path=str(incl.libcudacxx)) |
| 98 | + prog = core.Program(src, code_type="c++", options=opts) |
| 99 | + if in_type is None: |
| 100 | + in_type = "::cuda::std::int32_t" |
| 101 | + if out_type is None: |
| 102 | + out_type = "::cuda::std::int32_t" |
| 103 | + instance_name = f"copy_kernel<{in_type}, {out_type}>" |
| 104 | + mod = prog.compile("cubin", name_expressions=(instance_name,)) |
| 105 | + return mod.get_kernel(instance_name) |
| 106 | + |
| 107 | + |
| 108 | +def copy_sweep_grid_shape(state: nvbench.State): |
| 109 | + block_size = state.getInt64("BlockSize") |
| 110 | + num_blocks = state.getInt64("NumBlocks") |
| 111 | + |
| 112 | + # Number of int32 elements in 256MiB |
| 113 | + nbytes = 256 * 1024 * 1024 |
| 114 | + num_values = nbytes // ctypes.sizeof(ctypes.c_int32(0)) |
| 115 | + |
| 116 | + state.addElementCount(num_values) |
| 117 | + state.addGlobalMemoryReads(nbytes) |
| 118 | + state.addGlobalMemoryWrites(nbytes) |
| 119 | + |
| 120 | + dev = core.Device(state.getDevice()) |
| 121 | + dev.set_current() |
| 122 | + |
| 123 | + alloc_stream = dev.create_stream(state.getStream()) |
| 124 | + input_buf = core.DeviceMemoryResource(dev.device_id).allocate(nbytes, alloc_stream) |
| 125 | + output_buf = core.DeviceMemoryResource(dev.device_id).allocate(nbytes, alloc_stream) |
| 126 | + |
| 127 | + krn = make_copy_kernel() |
| 128 | + launch_config = core.LaunchConfig(grid=num_blocks, block=block_size, shmem_size=0) |
| 129 | + |
| 130 | + def launcher(launch: nvbench.Launch): |
| 131 | + dev = core.Device() |
| 132 | + dev.set_current() |
| 133 | + s = dev.create_stream(launch.getStream()) |
| 134 | + |
| 135 | + core.launch(s, launch_config, krn, input_buf, output_buf, num_values) |
| 136 | + |
| 137 | + state.exec(launcher) |
| 138 | + |
| 139 | + |
| 140 | +def copy_type_sweep(state: nvbench.State): |
| 141 | + type_id = state.getInt64("TypeID") |
| 142 | + |
| 143 | + types_map = { |
| 144 | + 0: (ctypes.c_uint8, "::cuda::std::uint8_t"), |
| 145 | + 1: (ctypes.c_uint16, "::cuda::std::uint16_t"), |
| 146 | + 2: (ctypes.c_uint32, "::cuda::std::uint32_t"), |
| 147 | + 3: (ctypes.c_uint64, "::cuda::std::uint64_t"), |
| 148 | + 4: (ctypes.c_float, "float"), |
| 149 | + 5: (ctypes.c_double, "double"), |
| 150 | + } |
| 151 | + |
| 152 | + value_ctype, value_cuda_t = types_map[type_id] |
| 153 | + |
| 154 | + # Number of elements in 256MiB |
| 155 | + nbytes = 256 * 1024 * 1024 |
| 156 | + num_values = nbytes // ctypes.sizeof(value_ctype(0)) |
| 157 | + |
| 158 | + state.addElementCount(num_values) |
| 159 | + state.addGlobalMemoryReads(nbytes) |
| 160 | + state.addGlobalMemoryWrites(nbytes) |
| 161 | + |
| 162 | + dev = core.Device(state.getDevice()) |
| 163 | + dev.set_current() |
| 164 | + |
| 165 | + alloc_stream = dev.create_stream(state.getStream()) |
| 166 | + input_buf = core.DeviceMemoryResource(dev.device_id).allocate(nbytes, alloc_stream) |
| 167 | + output_buf = core.DeviceMemoryResource(dev.device_id).allocate(nbytes, alloc_stream) |
| 168 | + |
| 169 | + krn = make_copy_kernel(value_cuda_t, value_cuda_t) |
| 170 | + launch_config = core.LaunchConfig(grid=256, block=256, shmem_size=0) |
| 171 | + |
| 172 | + def launcher(launch: nvbench.Launch): |
| 173 | + dev = core.Device() |
| 174 | + dev.set_current() |
| 175 | + s = dev.create_stream(launch.getStream()) |
| 176 | + |
| 177 | + core.launch(s, launch_config, krn, input_buf, output_buf, num_values) |
| 178 | + |
| 179 | + state.exec(launcher) |
| 180 | + |
| 181 | + |
| 182 | +if __name__ == "__main__": |
| 183 | + # Benchmark without axes |
| 184 | + nvbench.register(simple) |
| 185 | + |
| 186 | + # benchmark with no axes, that uses default value |
| 187 | + nvbench.register(default_value) |
| 188 | + # specify axis |
| 189 | + nvbench.register(single_float64_axis).addFloat64Axis("Duration", [7e-5, 1e-4, 5e-4]) |
| 190 | + |
| 191 | + copy1_bench = nvbench.register(copy_sweep_grid_shape) |
| 192 | + copy1_bench.addInt64Axis("BlockSize", [2**x for x in range(6, 10, 2)]) |
| 193 | + copy1_bench.addInt64Axis("NumBlocks", [2**x for x in range(6, 10, 2)]) |
| 194 | + |
| 195 | + copy2_bench = nvbench.register(copy_type_sweep) |
| 196 | + copy2_bench.addInt64Axis("TypeID", range(0, 6)) |
| 197 | + |
| 198 | + nvbench.run_all_benchmarks(sys.argv) |
0 commit comments