|
| 1 | +import asyncio |
| 2 | +from concurrent.futures import ThreadPoolExecutor |
| 3 | +from enum import Enum, auto |
| 4 | +from functools import partial |
| 5 | +from typing import Any, Awaitable, Callable, Dict, Generic, List, Optional, TypeVar, Union |
| 6 | + |
| 7 | +T = TypeVar('T') # Input type |
| 8 | +R = TypeVar('R') # Attribution result type |
| 9 | + |
| 10 | + |
| 11 | +class AttributionState(Enum): |
| 12 | + STOP = auto() |
| 13 | + CONTINUE = auto() |
| 14 | + |
| 15 | + |
| 16 | +class NVRxAttribution(Generic[T, R]): |
| 17 | + """A class that implements a three-step attribution process. |
| 18 | + This class is designed to be used in a pipeline of attribution modules. |
| 19 | + The output of one attribution module can be used as the input to the next attribution module. |
| 20 | +
|
| 21 | + This class handles: |
| 22 | + 1. Input preprocessing - can handle single objects or lists of objects |
| 23 | + 2. Attribution computation |
| 24 | + 3. Output handling |
| 25 | + """ |
| 26 | + |
| 27 | + # Shared loop for all instances |
| 28 | + _shared_loop = None |
| 29 | + _loop_lock = asyncio.Lock() |
| 30 | + |
| 31 | + @classmethod |
| 32 | + def get_shared_loop(cls): |
| 33 | + """Get or create the shared event loop.""" |
| 34 | + if cls._shared_loop is None or cls._shared_loop.is_closed(): |
| 35 | + cls._shared_loop = asyncio.new_event_loop() |
| 36 | + asyncio.set_event_loop(cls._shared_loop) |
| 37 | + return cls._shared_loop |
| 38 | + |
| 39 | + def __init__( |
| 40 | + self, |
| 41 | + preprocess_input: Callable[[Union[T, List[T]]], Any], |
| 42 | + attribution: Callable[[Any], R], |
| 43 | + output_handler: Callable[[R], None], |
| 44 | + attribution_kwargs: Optional[Dict[str, Any]] = None, |
| 45 | + thread_pool: Optional[ThreadPoolExecutor] = None, |
| 46 | + ): |
| 47 | + """Initialize the attribution module. |
| 48 | +
|
| 49 | + Args: |
| 50 | + preprocess_input: Function to preprocess the input data. Can handle single objects or lists. |
| 51 | + attribution: Function to perform the attribution computation |
| 52 | + output_handler: Function to handle the attribution results |
| 53 | + attribution_kwargs: Optional keyword arguments to pass to the attribution function |
| 54 | + thread_pool: Optional thread pool for running sync functions |
| 55 | + """ |
| 56 | + self._preprocess_input = preprocess_input |
| 57 | + self._attribution = attribution |
| 58 | + self._output_handler = output_handler |
| 59 | + self.attribution_kwargs = attribution_kwargs or {} |
| 60 | + self._thread_pool = thread_pool or ThreadPoolExecutor(max_workers=2) |
| 61 | + |
| 62 | + # Get the shared loop and set the thread pool |
| 63 | + self._loop = self.get_shared_loop() |
| 64 | + self._loop.set_default_executor(self._thread_pool) |
| 65 | + |
| 66 | + async def _run_sync_in_thread(self, func: Callable, *args, **kwargs) -> Any: |
| 67 | + """Run a synchronous function in a thread pool. |
| 68 | +
|
| 69 | + Args: |
| 70 | + func: The synchronous function to run |
| 71 | + *args: Positional arguments for the function |
| 72 | + **kwargs: Keyword arguments for the function |
| 73 | +
|
| 74 | + Returns: |
| 75 | + The result of the function |
| 76 | + """ |
| 77 | + loop = asyncio.get_running_loop() |
| 78 | + return await loop.run_in_executor(self._thread_pool, partial(func, *args, **kwargs)) |
| 79 | + |
| 80 | + async def _preprocess_input_inner( |
| 81 | + self, input_data: Union[T, List[T], Awaitable[Union[T, List[T]]]] |
| 82 | + ) -> tuple[Any, AttributionState]: |
| 83 | + """Preprocess the input data. |
| 84 | +
|
| 85 | + Args: |
| 86 | + input_data: The raw input data to be preprocessed. Can be: |
| 87 | + - A single object of type T |
| 88 | + - A list of objects of type T |
| 89 | + - An awaitable that resolves to either of the above |
| 90 | +
|
| 91 | + Returns: |
| 92 | + Preprocessed data ready for attribution, and a flag to indicate if the attribution should continue. |
| 93 | + If the flag is AttributionState.STOP, the attribution should stop and the preprocessed data should be returned. |
| 94 | + If the flag is AttributionState.CONTINUE, the attribution should continue. |
| 95 | + """ |
| 96 | + # Handle awaitable inputs (e.g., from other attribution modules) |
| 97 | + # Await on awaitable objects in the list input_data |
| 98 | + awaited_input_data = None |
| 99 | + if isinstance(input_data, Awaitable): |
| 100 | + awaited_input_data = await input_data |
| 101 | + |
| 102 | + if isinstance(input_data, list): |
| 103 | + awaited_input_data = [] |
| 104 | + for item in input_data: |
| 105 | + awaited_item = None |
| 106 | + if isinstance(item, Awaitable): |
| 107 | + awaited_item = await item |
| 108 | + if awaited_item[1] == AttributionState.STOP: |
| 109 | + return awaited_item[0], awaited_item[1] |
| 110 | + else: |
| 111 | + awaited_input_data.append(awaited_item[0]) |
| 112 | + else: |
| 113 | + awaited_input_data.append(item) |
| 114 | + |
| 115 | + else: |
| 116 | + awaited_input_data = input_data |
| 117 | + # Check if preprocess_input is async |
| 118 | + if asyncio.iscoroutinefunction(self._preprocess_input): |
| 119 | + return await self._preprocess_input(awaited_input_data), AttributionState.CONTINUE |
| 120 | + else: |
| 121 | + return ( |
| 122 | + await self._run_sync_in_thread(self._preprocess_input, awaited_input_data), |
| 123 | + AttributionState.CONTINUE, |
| 124 | + ) |
| 125 | + |
| 126 | + async def do_attribution(self, preprocessed_data: Any) -> R: |
| 127 | + """Perform the attribution computation. |
| 128 | +
|
| 129 | + Args: |
| 130 | + preprocessed_data: The preprocessed input data |
| 131 | +
|
| 132 | + Returns: |
| 133 | + The attribution results |
| 134 | + """ |
| 135 | + # Check if attribution is async |
| 136 | + if asyncio.iscoroutinefunction(self._attribution): |
| 137 | + return await self._attribution(preprocessed_data, **self.attribution_kwargs) |
| 138 | + else: |
| 139 | + return await self._run_sync_in_thread( |
| 140 | + self._attribution, preprocessed_data, **self.attribution_kwargs |
| 141 | + ) |
| 142 | + |
| 143 | + async def output_handler(self, attribution_result: R) -> R: |
| 144 | + """Handle the attribution results. |
| 145 | +
|
| 146 | + Args: |
| 147 | + attribution_result: The results from the attribution computation |
| 148 | + """ |
| 149 | + # Check if output_handler is async |
| 150 | + if asyncio.iscoroutinefunction(self._output_handler): |
| 151 | + return await self._output_handler(attribution_result) |
| 152 | + else: |
| 153 | + return await self._run_sync_in_thread(self._output_handler, attribution_result) |
| 154 | + |
| 155 | + async def run(self, input_data: Union[T, List[T], Awaitable[Union[T, List[T]]]]) -> R: |
| 156 | + """Run the complete attribution pipeline. |
| 157 | +
|
| 158 | + Args: |
| 159 | + input_data: The raw input data to process. Can be: |
| 160 | + - A single object of type T |
| 161 | + - A list of objects of type T |
| 162 | + - An awaitable that resolves to either of the above |
| 163 | +
|
| 164 | + Returns: |
| 165 | + The attribution results of type R |
| 166 | + """ |
| 167 | + loop = asyncio.get_running_loop() |
| 168 | + |
| 169 | + async def _run_pipeline(): |
| 170 | + preprocessed_data, flag_to_proceed = await self._preprocess_input_inner(input_data) |
| 171 | + if flag_to_proceed == AttributionState.CONTINUE: |
| 172 | + attribution_result = await self.do_attribution(preprocessed_data) |
| 173 | + final_output = await self.output_handler(attribution_result) |
| 174 | + return final_output |
| 175 | + else: |
| 176 | + return preprocessed_data |
| 177 | + |
| 178 | + return await loop.create_task(_run_pipeline()) |
| 179 | + |
| 180 | + def run_sync(self, input_data: Union[T, List[T], Awaitable[Union[T, List[T]]]]) -> R: |
| 181 | + """Run the attribution pipeline synchronously. |
| 182 | +
|
| 183 | + Args: |
| 184 | + input_data: The raw input data to process. Can be: |
| 185 | + - A single object of type T |
| 186 | + - A list of objects of type T |
| 187 | + - An awaitable that resolves to either of the above |
| 188 | +
|
| 189 | + Returns: |
| 190 | + The attribution results of type R |
| 191 | + """ |
| 192 | + loop = self._loop |
| 193 | + |
| 194 | + try: |
| 195 | + return loop.run_until_complete(self.run(input_data)) |
| 196 | + finally: |
| 197 | + # Don't close the shared loop, just clean up if needed |
| 198 | + pass |
| 199 | + |
| 200 | + def __del__(self): |
| 201 | + """Cleanup thread pool on deletion.""" |
| 202 | + if hasattr(self, '_thread_pool'): |
| 203 | + self._thread_pool.shutdown(wait=False) |
0 commit comments