-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
168 lines (123 loc) · 4.69 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
import torch.nn as nn
import math
device = 'cuda' if torch.cuda.is_available() else 'cpu'
class DNN(nn.Module):
"""Deep Neural Network"""
def __init__(self, input_size, hidden_size, output_size):
super(DNN, self).__init__()
self.main = nn.Sequential(
nn.Linear(input_size, hidden_size),
nn.ReLU(inplace=True),
nn.Linear(hidden_size, output_size)
)
def forward(self, x):
x = x.squeeze(dim=2)
out = self.main(x)
return out
class CNN(nn.Module):
"""Convolutional Neural Networks"""
def __init__(self, input_size, hidden_dim, output_size):
super(CNN, self).__init__()
self.main = nn.Sequential(
nn.Conv1d(in_channels=input_size, out_channels=hidden_dim, kernel_size=1),
nn.ReLU(),
nn.Flatten(),
nn.Linear(hidden_dim, 10),
nn.Linear(10, output_size)
)
def forward(self, x):
out = self.main(x)
return out
class RNN(nn.Module):
"""Vanilla RNN"""
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(RNN, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.output_size = output_size
self.rnn = nn.RNN(input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
out, _ = self.rnn(x)
out = out[:, -1, :]
out = self.fc(out)
return out
class LSTM(nn.Module):
"""Long Short Term Memory"""
def __init__(self, input_size, hidden_size, num_layers, output_size, bidirectional=False):
super(LSTM, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.output_size = output_size
self.bidirectional = bidirectional
self.lstm = nn.LSTM(input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
batch_first=True,
bidirectional=bidirectional)
if self.bidirectional:
self.fc = nn.Linear(hidden_size * 2, output_size)
else:
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
out, _ = self.lstm(x)
out = out[:, -1, :]
out = self.fc(out)
return out
class GRU(nn.Module):
"""Gat e Recurrent Unit"""
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(GRU, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.output_size = output_size
self.gru = nn.GRU(input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
out, _ = self.gru(x)
out = out[:, -1, :]
out = self.fc(out)
return out
class AttentionalLSTM(nn.Module):
"""LSTM with Attention"""
def __init__(self, input_size, qkv, hidden_size, num_layers, output_size, bidirectional=False):
super(AttentionalLSTM, self).__init__()
self.input_size = input_size
self.qkv = qkv
self.hidden_size = hidden_size
self.num_layers = num_layers
self.output_size = output_size
self.query = nn.Linear(input_size, qkv)
self.key = nn.Linear(input_size, qkv)
self.value = nn.Linear(input_size, qkv)
self.attn = nn.Linear(qkv, input_size)
self.scale = math.sqrt(qkv)
self.lstm = nn.LSTM(input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
batch_first=True,
bidirectional=bidirectional)
if bidirectional:
self.fc = nn.Linear(hidden_size * 2, output_size)
else:
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
Q, K, V = self.query(x), self.key(x), self.value(x)
dot_product = torch.matmul(Q, K.permute(0, 2, 1)) / self.scale
scores = torch.softmax(dot_product, dim=-1)
scaled_x = torch.matmul(scores, V) + x
out = self.attn(scaled_x) + x
out, _ = self.lstm(out)
out = out[:, -1, :]
out = self.fc(out)
return out