@@ -271,7 +271,7 @@ def mean_firing_rate(spiketrain, t_start=None, t_stop=None, axis=None):
271271
272272
273273def fanofactor (spiketrains : Union [List [neo .SpikeTrain ], List [pq .Quantity ], List [np .ndarray ], elephant .trials .Trials ],
274- warn_tolerance : pq .Quantity = 0.1 * pq .ms , pool_trials : bool = False , pool_spike_trains : bool = False
274+ warn_tolerance : pq .Quantity = 0.1 * pq .ms , pool_trials : bool = False
275275 ) -> Union [float , List [float ], List [List [float ]]]:
276276 r"""
277277 Evaluates the empirical Fano factor F of the spike counts of
@@ -303,9 +303,6 @@ def fanofactor(spiketrains: Union[List[neo.SpikeTrain], List[pq.Quantity], List[
303303 pool_trials : bool, optional
304304 If True, pool spike trains across trials before computing the Fano factor.
305305 Default: False
306- pool_spike_trains : bool, optional
307- If True, pool spike trains within each trial before computing the Fano factor.
308- Default: False
309306
310307 Returns
311308 -------
@@ -343,8 +340,6 @@ def fanofactor(spiketrains: Union[List[neo.SpikeTrain], List[pq.Quantity], List[
343340 # Check if parameters are of the correct type
344341 if not isinstance (pool_trials , bool ):
345342 raise TypeError (f"'pool_trials' must be of type bool, but got { type (pool_trials )} " )
346- elif not isinstance (pool_spike_trains , bool ):
347- raise TypeError (f"'pool_spike_trains' must be of type bool, but got { type (pool_spike_trains )} " )
348343 elif not is_time_quantity (warn_tolerance ):
349344 raise TypeError (f"'warn_tolerance' must be a time quantity, but got { type (warn_tolerance )} " )
350345
@@ -374,23 +369,16 @@ def _compute_fano(spiketrains: Union[List[neo.SpikeTrain], List[pq.Quantity], Li
374369 return spike_counts .var ()/ spike_counts .mean ()
375370
376371 if isinstance (spiketrains , elephant .trials .Trials ):
377- if not pool_trials and not pool_spike_trains :
372+ if not pool_trials :
378373 return [[_compute_fano ([spiketrain ]) for spiketrain in spiketrains .get_spiketrains_from_trial_as_list (idx )]
379374 for idx in range (spiketrains .n_trials )]
380- elif not pool_trials and pool_spike_trains :
381- return [_compute_fano (spiketrains .get_spiketrains_from_trial_as_list (idx ))
382- for idx in range (spiketrains .n_trials )]
383- elif pool_trials and not pool_spike_trains :
375+ elif pool_trials :
384376 list_of_lists_of_spiketrains = [
385377 spiketrains .get_spiketrains_from_trial_as_list (trial_id = trial_no )
386378 for trial_no in range (spiketrains .n_trials )]
387379 return [_compute_fano ([list_of_lists_of_spiketrains [trial_no ][st_no ]
388380 for trial_no in range (len (list_of_lists_of_spiketrains ))])
389381 for st_no in range (len (list_of_lists_of_spiketrains [0 ]))]
390- elif pool_trials and pool_spike_trains :
391- return [_compute_fano (
392- [spiketrain for trial_no in range (spiketrains .n_trials )
393- for spiketrain in spiketrains .get_spiketrains_from_trial_as_list (trial_id = trial_no )])]
394382 else : # Legacy behavior
395383 return _compute_fano (spiketrains )
396384
0 commit comments