forked from ANTsX/ANTs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathANTSConformalMapping.cxx
552 lines (497 loc) · 19.3 KB
/
ANTSConformalMapping.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
#include "antsUtilities.h"
#include <algorithm>
#include "antsCommandLineParser.h"
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkFEMLinearSystemWrapperItpack.h"
#include "itkFEMElement3DC0LinearTriangularLaplaceBeltrami.h"
#include "itkFEMElement3DC0LinearTriangularMembrane.h"
#include "itkFEMDiscConformalMap.h"
#include "vtkCallbackCommand.h"
#include "vtkPolyDataWriter.h"
#include "vtkPolyDataReader.h"
#include <vtkSmartPointer.h>
#include <vtkWindowedSincPolyDataFilter.h>
#include <string>
#include <algorithm>
#include <vector>
namespace ants
{
template <class TFilter>
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate()
{
};
public:
void Execute(itk::Object *caller, const itk::EventObject & event)
{
Execute( (const itk::Object *) caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event)
{
const TFilter * filter =
dynamic_cast<const TFilter *>( object );
if( typeid( event ) != typeid( itk::IterationEvent ) )
{
return;
}
std::cout << "Iteration " << filter->GetElapsedIterations()
<< " (of " << filter->GetMaximumNumberOfIterations() << "): ";
std::cout << filter->GetCurrentConvergenceMeasurement()
<< " (threshold = " << filter->GetConvergenceThreshold()
<< ")" << std::endl;
}
};
void InitializeCommandLineOptions( itk::ants::CommandLineParser *parser )
{
typedef itk::ants::CommandLineParser::OptionType OptionType;
{
std::string description =
std::string(
"Two mesh images are specified as input - 1. defines the label mesh. must have a scalar attached to vertices named 'Label'. 2. defines the feature mesh. scalar name is 'Feature'. we put the 2nd mesh's values into the flat space." );
OptionType::Pointer option = OptionType::New();
option->SetLongName( "input-mesh" );
option->SetShortName( 'i' );
option->SetUsageOption( 0, "[InputMesh1.vtk,<InputMesh2.vtk>]" );
option->SetDescription( description );
parser->AddOption( option );
}
{
std::string description =
std::string( "Display the mesh." );
OptionType::Pointer option = OptionType::New();
option->SetLongName( "display-mesh" );
option->SetShortName( 'd' );
option->SetUsageOption( 0, "[InputMesh1.vtk]" );
option->SetDescription( description );
parser->AddOption( option );
}
{
std::string description =
std::string( "Inflation --- two params : \n 1. BandPass (smaller increases smoothing) -- e.g. 0.001. \n " )
+ std::string( "2. number of iterations --- higher increases smoothing. " );
OptionType::Pointer option = OptionType::New();
option->SetLongName( "inflate" );
option->SetShortName( 'f' );
option->SetUsageOption( 0, "[<InverseSmoothingFactor=0.001>,<iterations=150>]" );
option->SetDescription( description );
parser->AddOption( option );
}
{
std::string description =
std::string(
"SegmentationCost --- 3 params : \n 1. Float-Max-Cost : controls the size of the output region. \n " )
+ std::string( "2. Float-Weight for distance cost = edge_length*W_d \n " )
+ std::string(
"3. Float-Weight for label cost = H(fabs( desiredLabel - localLabel ))*W_l*MaxCost \n where H is the heaviside function." );
OptionType::Pointer option = OptionType::New();
option->SetLongName( "segmentation-cost" );
option->SetShortName( 's' );
option->SetUsageOption( 0, "e.g. [40,1,0]" );
option->SetDescription( description );
parser->AddOption( option );
}
{
std::string description =
std::string(
"The output consists of one (or more) meshes ... 1. the flattened mesh with features mapped. 2. the extracted extrinisic mesh. 3. inflated mesh. ");
OptionType::Pointer option = OptionType::New();
option->SetLongName( "output" );
option->SetShortName( 'o' );
option->SetUsageOption( 0, "[MyFlatMesh.vtk,<MyOptionalExtrinsicMesh.vtk>,<MyOptionalInflatedMesh.vtk>]" );
option->SetDescription( description );
parser->AddOption( option );
}
{
std::string description =
std::string( "Map to a canonical domain : pass square or circle ");
OptionType::Pointer option = OptionType::New();
option->SetLongName( "canonical-domain" );
option->SetShortName( 'c' );
option->SetUsageOption( 0, "[domain]" );
option->SetDescription( description );
parser->AddOption( option );
}
{
std::string description = std::string( "Print the help menu (short version)." );
OptionType::Pointer option = OptionType::New();
option->SetShortName( 'h' );
option->SetDescription( description );
option->AddFunction( std::string( "0" ) );
parser->AddOption( option );
}
{
std::string description = std::string( "Print the help menu." );
OptionType::Pointer option = OptionType::New();
option->SetLongName( "help" );
option->SetDescription( description );
option->AddFunction( std::string( "0" ) );
parser->AddOption( option );
}
{
std::string description =
std::string(
"Parameterize the boundary while searching for the boundary (a bit slow and not guaranteed to be doable). " )
+ std::string( "If false, we try to parameterize after the searching is done. " )
+ std::string( "This option is meaningless if you pass the boundary in as an option. " );
OptionType::Pointer option = OptionType::New();
option->SetLongName( "param-while-searching" );
option->SetShortName( 'p' );
option->SetUsageOption( 0, "0 / 1 " );
option->SetDescription( description );
parser->AddOption( option );
}
{
std::string description =
std::string( "Which label (unsigned integer) to flatten. " );
OptionType::Pointer option = OptionType::New();
option->SetLongName( "label-to-flatten" );
option->SetShortName( 'l' );
option->SetUsageOption( 0, "1" );
option->SetDescription( description );
parser->AddOption( option );
}
{
std::string description =
std::string( "The name of a boundary parameterization file (not implemented)." );
OptionType::Pointer option = OptionType::New();
option->SetLongName( "boundary-param" );
option->SetShortName( 'b' );
option->SetUsageOption( 0, "[filename.vtk]" );
option->SetDescription( description );
parser->AddOption( option );
}
}
template <unsigned int ImageDimension>
int ANTSConformalMapping( itk::ants::CommandLineParser *parser )
{
typedef float PixelType;
typedef float RealType;
typedef itk::Image<PixelType, ImageDimension> ImageType;
// we define the options in the InitializeCommandLineOptions function
// and then use them here ...
typedef vtkPolyData MeshType;
vtkSmartPointer<MeshType> labelmesh = NULL;
vtkSmartPointer<MeshType> featuremesh = NULL;
vtkSmartPointer<MeshType> inflatedmesh = NULL;
typedef itk::FEMDiscConformalMap<MeshType, ImageType> ParamType;
typename ParamType::Pointer flattener = ParamType::New();
flattener->SetDebug(false);
flattener->SetSigma(1);
// flattener->SetSurfaceMesh(vtkmesh);
// first find out if the user wants to inflate the mesh ...
unsigned int inflate_iterations = 0;
float inflate_param = 0;
typename itk::ants::CommandLineParser::OptionType::Pointer infOption =
parser->GetOption( "inflate" );
if( infOption && infOption->GetNumberOfFunctions() )
{
if( infOption->GetFunction( 0 )->GetNumberOfParameters() == 2 )
{
inflate_param = parser->Convert<float>(infOption->GetParameter( 0 ) );
inflate_iterations = parser->Convert<unsigned int>(infOption->GetParameter( 1 ) );
std::cout << " you will inflate before flattening with params " << inflate_param << " applied over "
<< inflate_iterations << " iterations. " << std::endl;
}
else
{
std::cerr << " wrong params for inflation. ignoring. " << std::endl;
std::cerr << " " << infOption->GetDescription() << std::endl;
return EXIT_FAILURE;
}
}
float maxCost = 40, distCostW = 1, labelCostW = 0;
typename itk::ants::CommandLineParser::OptionType::Pointer costOption =
parser->GetOption( "segmentation-cost" );
if( costOption && costOption->GetNumberOfFunctions() )
{
if( costOption->GetFunction( 0 )->GetNumberOfParameters() == 3 )
{
maxCost = parser->Convert<float>(costOption->GetParameter( 0 ) );
distCostW = parser->Convert<float>(costOption->GetParameter( 1 ) );
labelCostW = parser->Convert<float>(costOption->GetParameter( 2 ) );
}
else
{
std::cerr << " wrong params for cost weights. " << std::endl;
std::cerr << " " << costOption->GetDescription() << std::endl;
return EXIT_FAILURE;
}
}
typename itk::ants::CommandLineParser::OptionType::Pointer displayOption = parser->GetOption( "display-mesh" );
if( displayOption && displayOption->GetNumberOfFunctions() )
{
if( displayOption->GetFunction( 0 )->GetNumberOfParameters() > 0 )
{
std::string dispm = displayOption->GetParameter( 0 );
std::cout << " render " << dispm << std::endl;
// read the vtk file ...
vtkPolyDataReader *fltReader = vtkPolyDataReader::New();
fltReader->SetFileName(dispm.c_str() );
fltReader->Update();
vtkSmartPointer<vtkPolyDataNormals> normalGenerator =
vtkSmartPointer<vtkPolyDataNormals>::New();
normalGenerator->SetInput(fltReader->GetOutput() );
normalGenerator->Update();
vtkRenderer* ren1 = vtkRenderer::New();
vtkRenderWindow* renWin = vtkRenderWindow::New();
renWin->AddRenderer(ren1);
vtkRenderWindowInteractor* inter = vtkRenderWindowInteractor::New();
inter->SetRenderWindow(renWin);
vtkCallbackCommand *cbc = vtkCallbackCommand::New();
ren1->AddObserver(vtkCommand::KeyPressEvent, cbc);
vtkDataSetMapper* mapper = vtkDataSetMapper::New();
mapper->SetInput( normalGenerator->GetOutput() );
mapper->SetScalarRange(0, 255);
vtkActor* actor = vtkActor::New();
actor->SetMapper(mapper);
ren1->SetViewport(0.0, 0.0, 1.0, 1.0);
ren1->AddActor(actor);
renWin->Render();
inter->Start();
mapper->Delete();
actor->Delete();
ren1->Delete();
renWin->Delete();
inter->Delete();
fltReader->Delete();
return 0;
}
}
typename itk::ants::CommandLineParser::OptionType::Pointer outputOption =
parser->GetOption( "output" );
/**
* Initialization
*/
typename itk::ants::CommandLineParser::OptionType::Pointer inOption =
parser->GetOption( "input-mesh" );
if( inOption && inOption->GetFunction( 0 )->GetNumberOfParameters() == 2 )
{
std::string innm = inOption->GetParameter( 0 );
vtkSmartPointer<vtkPolyDataReader> labReader = vtkSmartPointer<vtkPolyDataReader>::New();
labReader->SetFileName(innm.c_str() );
labReader->Update();
labelmesh = vtkSmartPointer<vtkPolyData>( labReader->GetOutput() );
vtkDataArray* labels = labelmesh->GetPointData()->GetArray("Label");
if( !labels )
{
std::cerr << " Cannot find vtk Array named 'Label' in " << innm << std::endl;
std::cerr << " This could cause problems " << std::endl;
// std::cout <<" exiting " << std::endl;
// throw std::exception();
}
innm = inOption->GetParameter( 1 );
vtkSmartPointer<vtkPolyDataReader> fltReader = vtkSmartPointer<vtkPolyDataReader>::New();
fltReader->SetFileName(innm.c_str() );
fltReader->Update();
featuremesh = vtkSmartPointer<vtkPolyData>( fltReader->GetOutput() );
vtkDataArray* feats = featuremesh->GetPointData()->GetArray("Feature");
if( !feats )
{
std::cerr << " Cannot find vtk Array named 'Feature' in " << innm << std::endl;
std::cerr << " continuing " << std::endl;
}
/** inflation */
if( inflate_iterations > 0 )
{
vtkSmartPointer<vtkWindowedSincPolyDataFilter> smoother =
vtkSmartPointer<vtkWindowedSincPolyDataFilter>::New();
smoother->SetInput(labelmesh);
smoother->SetNumberOfIterations( (int) inflate_iterations );
smoother->BoundarySmoothingOn();
smoother->FeatureEdgeSmoothingOff();
smoother->SetFeatureAngle(180.0);
smoother->SetEdgeAngle(180.0);
smoother->SetPassBand( inflate_param ); // smaller values increase smoothing
smoother->NonManifoldSmoothingOn();
smoother->NormalizeCoordinatesOff();
smoother->Update();
inflatedmesh = vtkSmartPointer<vtkPolyData>(smoother->GetOutput() );
std::cout << " done smoothing " << std::endl;
flattener->SetSurfaceMesh(inflatedmesh);
if( outputOption->GetFunction( 0 )->GetNumberOfParameters() > 0 )
{
for( unsigned int p = 0; p < outputOption->GetFunction( 0 )->GetNumberOfParameters(); p++ )
{
if( p == 2 && inflatedmesh )
{
vtkPolyDataWriter *writer = vtkPolyDataWriter::New();
writer->SetInput(inflatedmesh);
std::string outnm = outputOption->GetParameter( 2 );
std::cout << " writing " << outnm << std::endl;
writer->SetFileName(outnm.c_str() );
writer->SetFileTypeToBinary();
writer->Update();
}
}
}
}
else
{
flattener->SetSurfaceMesh(labelmesh);
}
flattener->SetSurfaceFeatureMesh(featuremesh);
}
bool paramws = parser->template Convert<bool>( parser->GetOption( "param-while-searching" )->GetFunction() );
flattener->SetParamWhileSearching(paramws);
unsigned int labeltoflatten = parser->template Convert<unsigned int>(
parser->GetOption( "label-to-flatten" )->GetFunction() );
flattener->SetLabelToFlatten(labeltoflatten);
std::string canonicaldomain = parser->GetOption( "canonical-domain" )->GetFunction();
// canonicaldomain=ConvertToLowerCase( canonicaldomain );
std::cout << " you will map label " << labeltoflatten << " to a " << canonicaldomain << std::endl;
if( canonicaldomain == std::string("circle") )
{
flattener->SetMapToCircle();
}
else if( canonicaldomain == std::string("square") )
{
flattener->SetMapToSquare();
}
else
{
std::cerr << " that domain is not an option -- exiting. " << std::endl;
return EXIT_FAILURE;
}
// do stuff -- but not implemented yet
// flattener->SetDiscBoundaryList(NULL);
std::cout << " you will flatten " << labeltoflatten << ". param while searching? " << paramws << std::endl;
flattener->SetSigma(1);
flattener->SetMaxCost(maxCost);
flattener->SetDistanceCostWeight(distCostW);
flattener->SetLabelCostWeight(labelCostW);
std::cout << " MC " << maxCost << " DW " << distCostW << " LW " << labelCostW << std::endl;
flattener->ExtractSurfaceDisc();
std::cout << " begin conformal mapping ";
flattener->ConformalMap();
/**
* output
*/
if( outputOption && outputOption->GetNumberOfFunctions() )
{
if( outputOption->GetFunction( 0 )->GetNumberOfParameters() > 0 )
{
for( unsigned int p = 0; p < outputOption->GetFunction( 0 )->GetNumberOfParameters(); p++ )
{
if( p == 0 )
{
vtkPolyDataWriter *writer = vtkPolyDataWriter::New();
writer->SetInput(flattener->m_DiskSurfaceMesh);
std::string outnm = outputOption->GetParameter( p );
std::cout << " writing " << outnm << std::endl;
writer->SetFileName(outnm.c_str() );
writer->SetFileTypeToBinary();
if( flattener->m_DiskSurfaceMesh )
{
writer->Update();
}
}
if( p == 1 )
{
vtkPolyDataWriter *writer = vtkPolyDataWriter::New();
writer->SetInput(flattener->m_ExtractedSurfaceMesh);
std::string outnm = outputOption->GetParameter( 1 );
std::cout << " writing " << outnm << std::endl;
writer->SetFileName(outnm.c_str() );
writer->SetFileTypeToBinary();
if( flattener->m_ExtractedSurfaceMesh )
{
writer->Update();
}
}
if( p == 2 && inflatedmesh )
{
vtkPolyDataWriter *writer = vtkPolyDataWriter::New();
writer->SetInput(inflatedmesh);
std::string outnm = outputOption->GetParameter( 2 );
std::cout << " writing " << outnm << std::endl;
writer->SetFileName(outnm.c_str() );
writer->SetFileTypeToBinary();
writer->Update();
}
}
}
}
return EXIT_SUCCESS;
}
// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int ANTSConformalMapping( std::vector<std::string> args, std::ostream* out_stream = NULL )
{
// put the arguments coming in as 'args' into standard (argc,argv) format;
// 'args' doesn't have the command name as first, argument, so add it manually;
// 'args' may have adjacent arguments concatenated into one argument,
// which the parser should handle
args.insert( args.begin(), "ANTSConformalMapping" );
int argc = args.size();
char* * argv = new char *[args.size() + 1];
for( unsigned int i = 0; i < args.size(); ++i )
{
// allocate space for the string plus a null character
argv[i] = new char[args[i].length() + 1];
std::strncpy( argv[i], args[i].c_str(), args[i].length() );
// place the null character in the end
argv[i][args[i].length()] = '\0';
}
argv[argc] = 0;
// class to automatically cleanup argv upon destruction
class Cleanup_argv
{
public:
Cleanup_argv( char* * argv_, int argc_plus_one_ ) : argv( argv_ ), argc_plus_one( argc_plus_one_ )
{
}
~Cleanup_argv()
{
for( unsigned int i = 0; i < argc_plus_one; ++i )
{
delete[] argv[i];
}
delete[] argv;
}
private:
char* * argv;
unsigned int argc_plus_one;
};
Cleanup_argv cleanup_argv( argv, argc + 1 );
// antscout->set_stream( out_stream );
itk::ants::CommandLineParser::Pointer parser = itk::ants::CommandLineParser::New();
parser->SetCommand( argv[0] );
std::string commandDescription =
std::string( "A tool for conformal mapping to various canonical coordinate systems: disc, square " )
+ std::string( " operates on 3D vtk triangulated meshes.")
+ std::string(
" Open problems include computation of, consistent orientation of and parameterization of the boundary-condition defining loop. Should we use curve matching ? Knot points? Min distortion? " );
parser->SetCommandDescription( commandDescription );
InitializeCommandLineOptions( parser );
if( parser->Parse( argc, argv ) == EXIT_FAILURE )
{
return EXIT_FAILURE;
}
if( argc < 2 || parser->Convert<bool>(
parser->GetOption( "help" )->GetFunction() ) )
{
parser->PrintMenu( std::cout, 5, false );
if( argc < 2 )
{
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
else if( parser->Convert<bool>(
parser->GetOption( 'h' )->GetFunction() ) )
{
parser->PrintMenu( std::cout, 5, true );
return EXIT_SUCCESS;
}
ANTSConformalMapping<3>( parser );
}
} // namespace ants