forked from ANTsX/ANTs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSurfaceCurvature.cxx
202 lines (176 loc) · 6.79 KB
/
SurfaceCurvature.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#include "antsUtilities.h"
#include <algorithm>
#include "itkSurfaceCurvatureBase.h"
#include "itkSurfaceImageCurvature.h"
#include "ReadWriteData.h"
namespace ants
{
/*
void test1()
{
typedef itk::SurfaceCurvatureBase<ImageType> ParamType;
ParamType::Pointer Parameterizer=ParamType::New();
// Parameterizer->TestEstimateTangentPlane(p);
Parameterizer->FindNeighborhood();
// Parameterizer->WeightedEstimateTangentPlane( Parameterizer->GetOrigin() );
Parameterizer->EstimateTangentPlane(
Parameterizer->GetAveragePoint());
Parameterizer->PrintFrame();
// Parameterizer->SetOrigin(Parameterizer->GetAveragePoint());
for(int i=0; i<3; i++){
Parameterizer->ComputeWeightsAndDirectionalKappaAndAngles
(Parameterizer->GetOrigin());
Parameterizer->ComputeFrame(Parameterizer->GetOrigin());
Parameterizer->EstimateCurvature();
Parameterizer->PrintFrame();
}
Parameterizer->ComputeJoshiFrame(Parameterizer->GetOrigin()); Parameterizer->PrintFrame();
std::cout << " err 1 " << Parameterizer->ErrorEstimate(Parameterizer->GetOrigin()) <<
" err 2 " << Parameterizer->ErrorEstimate(Parameterizer->GetOrigin(),-1) << std::endl;
}
*/
// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int SurfaceCurvature( std::vector<std::string> args, std::ostream* /*out_stream = NULL */ )
{
// put the arguments coming in as 'args' into standard (argc,argv) format;
// 'args' doesn't have the command name as first, argument, so add it manually;
// 'args' may have adjacent arguments concatenated into one argument,
// which the parser should handle
args.insert( args.begin(), "SurfaceCurvature" );
int argc = args.size();
char* * argv = new char *[args.size() + 1];
for( unsigned int i = 0; i < args.size(); ++i )
{
// allocate space for the string plus a null character
argv[i] = new char[args[i].length() + 1];
std::strncpy( argv[i], args[i].c_str(), args[i].length() );
// place the null character in the end
argv[i][args[i].length()] = '\0';
}
argv[argc] = ITK_NULLPTR;
// class to automatically cleanup argv upon destruction
class Cleanup_argv
{
public:
Cleanup_argv( char* * argv_, int argc_plus_one_ ) : argv( argv_ ), argc_plus_one( argc_plus_one_ )
{
}
~Cleanup_argv()
{
for( unsigned int i = 0; i < argc_plus_one; ++i )
{
delete[] argv[i];
}
delete[] argv;
}
private:
char* * argv;
unsigned int argc_plus_one;
};
Cleanup_argv cleanup_argv( argv, argc + 1 );
// antscout->set_stream( out_stream );
if( argc < 3 )
{
std::cout << " This implements The Shape Operator for Differential Analysis of Images (google for the pdf)" << std::endl;
std::cout << " By B. Avants and J.C. Gee " << std::endl;
std::cout << " Documentation is on demand --- if there is enough interest, documentation will improve." << std::endl;
std::cout << " There are several modes of operation and you must try parameters and input either binary or gray scale images to see the different effects ---- experimentation or reading the (minimal) documentation / paper / code is needed to understand the program " << std::endl;
std::cout << " usage : SurfaceCurvature FileNameIn FileNameOut sigma option " << std::endl;
std::cout << " e.g : SurfaceCurvature BrainIn.nii BrainOut.nii 3 0 " << std::endl;
std::cout << " option 0 means just compute mean curvature from intensity " << std::endl;
std::cout << " option 5 means characterize surface from intensity " << std::endl;
std::cout << " option 6 means compute gaussian curvature " << std::endl;
std::cout << " option 7 means surface area " << std::endl;
std::cout << " ... " << std::endl;
std::cout << " for surface characterization " << std::endl;
std::cout << " 1 == (+) bowl " << std::endl;
std::cout << " 2 == (-) bowl " << std::endl;
std::cout << " 3 == (+) saddle " << std::endl;
std::cout << " 4 == (-) saddle " << std::endl;
std::cout << " 5 == (+) U " << std::endl;
std::cout << " 6 == (-) U " << std::endl;
std::cout << " 7 == flat " << std::endl;
std::cout << " 8 == a perfectly even saddle (rare) " << std::endl;
std::cout << " " << std::endl;
std::cout << " we add 128 to mean curvature results s.t. they are differentiated from background (zero) "
<< std::endl;
return 0;
}
typedef itk::Image<float, 3> ImageType;
typedef itk::Image<float, 3> floatImageType;
enum { ImageDimension = ImageType::ImageDimension };
typedef itk::SurfaceImageCurvature<ImageType> ParamType;
ParamType::Pointer Parameterizer = ParamType::New();
int opt = 0;
float sig = 1.0;
if( argc > 3 )
{
sig = atof( argv[3]);
}
if( argc > 4 )
{
opt = (int) atoi(argv[4]);
}
if( opt < 0 )
{
std::cout << " error " << std::endl;
return 0;
}
ImageType::Pointer input;
ReadImage<ImageType>(input, argv[1]);
Parameterizer->SetInputImage(input);
// Parameterizer->ProcessLabelImage();
Parameterizer->SetNeighborhoodRadius( 1. );
if( sig <= 0.5 )
{
sig = 1.66;
}
Parameterizer->SetSigma(sig);
if( opt == 1 )
{
Parameterizer->SetUseLabel(true);
Parameterizer->SetUseGeodesicNeighborhood(false);
}
else
{
Parameterizer->SetUseLabel(false);
Parameterizer->SetUseGeodesicNeighborhood(false);
float sign = 1.0;
if( opt == 3 )
{
sign = -1.0;
}
Parameterizer->SetkSign(sign);
Parameterizer->SetThreshold(0);
}
// Parameterizer->ComputeSurfaceArea();
// Parameterizer->IntegrateFunctionOverSurface();
// Parameterizer->IntegrateFunctionOverSurface(true);
if( opt != 5 && opt != 6 && opt != 7 )
{
Parameterizer->ComputeFrameOverDomain( 3 );
}
else
{
Parameterizer->ComputeFrameOverDomain( opt );
}
// Parameterizer->SetNeighborhoodRadius( 2 );
// Parameterizer->LevelSetMeanCurvature();
// Parameterizer->SetNeighborhoodRadius( 2.9 );
// Parameterizer->IntegrateFunctionOverSurface(false);
// Parameterizer->SetNeighborhoodRadius( 1.5 );
// Parameterizer->IntegrateFunctionOverSurface(true);
// for (int i=0; i<1; i++) Parameterizer->PostProcessGeometry();
ImageType::Pointer output = Parameterizer->GetFunctionImage();
// Parameterizer->GetFunctionImage()->SetSpacing( input->GetSpacing() );
// Parameterizer->GetFunctionImage()->SetDirection( input->GetDirection() );
// Parameterizer->GetFunctionImage()->SetOrigin( input->GetOrigin() );
// smooth->SetSpacing(reader->GetOutput()->GetSpacing());
// SmoothImage(Parameterizer->GetFunctionImage(),smooth,3);
// NormalizeImage(smooth,output,mn);
// NormalizeImage(Parameterizer->GetFunctionImage(),output,mn);
WriteImage<floatImageType>( output, argv[2]);
return 0;
}
} // namespace ants