|
46 | 46 |
|
47 | 47 | # create a TimeSeries and add it to the file under the acquisition group |
48 | 48 | data = list(range(100, 200, 10)) |
49 | | - timestamps = np.arange(10, dtype=np.float) |
| 49 | + timestamps = np.arange(10, dtype=float) |
50 | 50 | test_ts = TimeSeries( |
51 | 51 | name="test_timeseries", data=data, unit="m", timestamps=timestamps |
52 | 52 | ) |
|
112 | 112 | session_start_time=datetime.datetime.now(datetime.timezone.utc), |
113 | 113 | ) |
114 | 114 | data1 = list(range(100, 200, 10)) |
115 | | -timestamps1 = np.arange(10, dtype=np.float) |
| 115 | +timestamps1 = np.arange(10, dtype=float) |
116 | 116 | test_ts1 = TimeSeries( |
117 | 117 | name="test_timeseries1", data=data1, unit="m", timestamps=timestamps1 |
118 | 118 | ) |
|
123 | 123 | name="behavior", description="processed behavioral data" |
124 | 124 | ) |
125 | 125 | data2 = list(range(100, 200, 10)) |
126 | | -timestamps2 = np.arange(10, dtype=np.float) |
| 126 | +timestamps2 = np.arange(10, dtype=float) |
127 | 127 | test_ts2 = TimeSeries( |
128 | 128 | name="test_timeseries2", data=data2, unit="m", timestamps=timestamps2 |
129 | 129 | ) |
|
141 | 141 |
|
142 | 142 | # add a new TimeSeries to the behavior processing module |
143 | 143 | data3 = list(range(100, 200, 10)) |
144 | | - timestamps3 = np.arange(10, dtype=np.float) |
| 144 | + timestamps3 = np.arange(10, dtype=float) |
145 | 145 | test_ts3 = TimeSeries( |
146 | 146 | name="test_timeseries3", data=data3, unit="m", timestamps=timestamps3 |
147 | 147 | ) |
|
0 commit comments