|
| 1 | +''' |
| 2 | +Advanced HDF5 I/O |
| 3 | +===================== |
| 4 | +
|
| 5 | +The HDF5 storage backend supports a broad range of advanced dataset I/O options, such as, |
| 6 | +chunking and compression. Here we demonstrate how to use these features |
| 7 | +from PyNWB. |
| 8 | +''' |
| 9 | + |
| 10 | +#################### |
| 11 | +# Wrapping data arrays with :py:meth:`~pynwb.form.backends.hdf5.h5_utils.H5DataIO` |
| 12 | +# --------------------------------------------------------------------------------- |
| 13 | +# |
| 14 | +# In order to customize the I/O of datasets using the HDF I/O backend we simply need to wrap our datasets |
| 15 | +# using :py:meth:`~pynwb.form.backends.hdf5.h5_utils.H5DataIO`. Using H5DataIO allows us to keep the Container |
| 16 | +# classes independent of the I/O backend while still allowing us to customize HDF5-specific I/O features. |
| 17 | +# |
| 18 | +# Before we get started, lets create an NWBFile for testing so that we can add our data to it. |
| 19 | +# |
| 20 | + |
| 21 | +from datetime import datetime |
| 22 | +from pynwb import NWBFile |
| 23 | + |
| 24 | +start_time = datetime(2017, 4, 3, 11, 0, 0) |
| 25 | +create_date = datetime(2017, 4, 15, 12, 0, 0) |
| 26 | + |
| 27 | +nwbfile = NWBFile(source='PyNWB tutorial', |
| 28 | + session_description='demonstrate advanced HDF5 I/O features', |
| 29 | + identifier='NWB123', |
| 30 | + session_start_time=start_time, |
| 31 | + file_create_date=create_date) |
| 32 | + |
| 33 | + |
| 34 | +#################### |
| 35 | +# Normally if we create a timeseries we would do |
| 36 | + |
| 37 | +from pynwb import TimeSeries |
| 38 | +import numpy as np |
| 39 | + |
| 40 | +data = np.arange(100, 200, 10) |
| 41 | +timestamps = np.arange(10) |
| 42 | +test_ts = TimeSeries(name='test_regular_timeseries', |
| 43 | + source='PyNWB tutorial', |
| 44 | + data=data, |
| 45 | + unit='SIunit', |
| 46 | + timestamps=timestamps) |
| 47 | +nwbfile.add_acquisition(test_ts) |
| 48 | + |
| 49 | +#################### |
| 50 | +# Now let's say we want to compress the recorded data values. We now simply need to wrap our data with H5DataIO. |
| 51 | +# Everything else remains the same |
| 52 | + |
| 53 | +from pynwb.form.backends.hdf5.h5_utils import H5DataIO |
| 54 | +wrapped_data = H5DataIO(data=data, compression=True) # <---- |
| 55 | +test_ts = TimeSeries(name='test_compressed_timeseries', |
| 56 | + source='PyNWB tutorial', |
| 57 | + data=wrapped_data, # <---- |
| 58 | + unit='SIunit', |
| 59 | + timestamps=timestamps) |
| 60 | +nwbfile.add_acquisition(test_ts) |
| 61 | + |
| 62 | +#################### |
| 63 | +# This simple approach gives us access to a broad range of advanced I/O features, such as, chunking and |
| 64 | +# compression. For a complete list of all available settings see :py:meth:`~pynwb.form.backends.hdf5.h5_utils.H5DataIO` |
| 65 | + |
| 66 | +#################### |
| 67 | +# Chunking |
| 68 | +# -------- |
| 69 | +# |
| 70 | +# By default, data arrays are stored *contiguously*. This means that on disk/in memory the elements of a |
| 71 | +# multi-dimensional, such as, ```[[1 2] [3 4]]``` are actually stored in a one-dimensional buffer |
| 72 | +# ```1 2 3 4```. Using chunking, allows us to break up our array into chunks so that our array will be |
| 73 | +# stored not in one but multiple buffers, e.g., ``[1 2] [3 4]``. Using this approach allows optimization |
| 74 | +# of data locality for I/O operations and enables the application of filters (e.g., compression) on a |
| 75 | +# per-chunk basis. |
| 76 | + |
| 77 | +##################### |
| 78 | +# .. tip:: |
| 79 | +# |
| 80 | +# For an introduction to chunking and compression in HDF5 and h5py in particular see also the online book |
| 81 | +# `Python and HDF5 <https://www.safaribooksonline.com/library/view/python-and-hdf5/9781491944981/ch04.html>`__ |
| 82 | +# by Andrew Collette. |
| 83 | + |
| 84 | + |
| 85 | +#################### |
| 86 | +# To use chunking we again, simply need to wrap our dataset via :py:meth:`~pynwb.form.backends.hdf5.h5_utils.H5DataIO`. |
| 87 | +# Using chunking then also allows to also create resizable arrays simply by defining the ``maxshape`` of the array. |
| 88 | + |
| 89 | +data = np.arange(10000).reshape((1000, 10)) |
| 90 | +wrapped_data = H5DataIO(data=data, |
| 91 | + chunks=True, # <---- Enable chunking |
| 92 | + maxshape=(None, 10) # <---- Make the time dimension unlimited and hence resizeable |
| 93 | + ) |
| 94 | +test_ts = TimeSeries(name='test_chunked_timeseries', |
| 95 | + source='PyNWB tutorial', |
| 96 | + data=wrapped_data, # <---- |
| 97 | + unit='SIunit', |
| 98 | + starting_time=0.0, |
| 99 | + rate=10.0) |
| 100 | +nwbfile.add_acquisition(test_ts) |
| 101 | + |
| 102 | + |
| 103 | +#################### |
| 104 | +# .. hint:: |
| 105 | +# |
| 106 | +# By also specifying ``fillvalue`` we can define the value that should be used when reading uninitialized |
| 107 | +# portions of the dataset. If no fill value has been defined, then HDF5 will use a type-appropriate default value. |
| 108 | +# |
| 109 | + |
| 110 | +#################### |
| 111 | +# .. note:: |
| 112 | +# |
| 113 | +# Chunking can help improve data read/write performance by allowing us to align chunks with common |
| 114 | +# read/write operations. The following blog post provides an example |
| 115 | +# `http://geology.beer/2015/02/10/hdf-for-large-arrays/ <http://geology.beer/2015/02/10/hdf-for-large-arrays/>`__. |
| 116 | +# for this. But you should also know that, with great power comes great responsibility! I.e., if you choose a |
| 117 | +# bad chunk size e.g., too small chunks that don't align with our read/write operations, then chunking can |
| 118 | +# also harm I/O performance. |
| 119 | + |
| 120 | +#################### |
| 121 | +# Compression and Other I/O Filters |
| 122 | +# ----------------------------------- |
| 123 | +# |
| 124 | +# HDF5 supports I/O filters, i.e, data transformation (e.g, compression) that are applied transparently on |
| 125 | +# read/write operations. I/O filters operate on a per-chunk basis in HDF5 and as such require the use of chunking. |
| 126 | +# Chunking will be automatically enabled by h5py when compression and other I/O filters are enabled. |
| 127 | +# |
| 128 | +# To use compression, we can wrap our dataset using :py:meth:`~pynwb.form.backends.hdf5.h5_utils.H5DataIO` and |
| 129 | +# define the approbriate opions: |
| 130 | + |
| 131 | +wrapped_data = H5DataIO(data=data, |
| 132 | + compression='gzip', # <---- Use GZip |
| 133 | + compression_opts=4, # <---- Optional GZip aggression option |
| 134 | + ) |
| 135 | +test_ts = TimeSeries(name='test_gzipped_timeseries', |
| 136 | + source='PyNWB tutorial', |
| 137 | + data=wrapped_data, # <---- |
| 138 | + unit='SIunit', |
| 139 | + starting_time=0.0, |
| 140 | + rate=10.0) |
| 141 | +nwbfile.add_acquisition(test_ts) |
| 142 | + |
| 143 | +#################### |
| 144 | +# .. hint:: |
| 145 | +# |
| 146 | +# In addition to ``compression``, :py:meth:`~pynwb.form.backends.hdf5.h5_utils.H5DataIO` also allows us to |
| 147 | +# enable the ``shuffle`` and ``fletcher32`` HDF5 I/O filters. |
| 148 | + |
| 149 | +#################### |
| 150 | +# .. note:: |
| 151 | +# |
| 152 | +# *h5py* (and *HDF5* more broadly) support a number of different compression |
| 153 | +# algorithms, e.g., *GZIP*, *SZIP*, or *LZF* (or even custom compression filters). |
| 154 | +# However, only *GZIP* is built by default with HDF5, i.e., while data compressed |
| 155 | +# with *GZIP* can be read on all platforms and installation of HDF5, other |
| 156 | +# compressors may not be installed everywhere so that not all users may |
| 157 | +# be able to access those files. |
| 158 | +# |
| 159 | + |
| 160 | + |
| 161 | +#################### |
| 162 | +# Writing the data |
| 163 | +# ----------------------- |
| 164 | +# |
| 165 | +# |
| 166 | +# Writing the data now works as usual. |
| 167 | + |
| 168 | +from pynwb import NWBHDF5IO |
| 169 | + |
| 170 | +io = NWBHDF5IO('advanced_io_example.nwb', 'w') |
| 171 | +io.write(nwbfile) |
| 172 | +io.close() |
| 173 | + |
| 174 | +#################### |
| 175 | +# Reading the data |
| 176 | +# --------------------- |
| 177 | +# |
| 178 | +# |
| 179 | +# Again, nothing has changed for read. All of the above advanced I/O features are handled transparently. |
| 180 | + |
| 181 | +io = NWBHDF5IO('advanced_io_example.nwb') |
| 182 | +nwbfile = io.read() |
| 183 | + |
| 184 | +#################### |
| 185 | +# Now lets have a look to confirm that all our I/O settings where indeed used. |
| 186 | + |
| 187 | +for k, v in nwbfile.acquisition.items(): |
| 188 | + print("name=%s, chunks=%s, compression=%s, maxshape=%s" % (k, |
| 189 | + v.data.chunks, |
| 190 | + v.data.compression, |
| 191 | + v.data.maxshape)) |
| 192 | + |
| 193 | +#################### |
| 194 | +# |
| 195 | +# .. code-block:: python |
| 196 | +# |
| 197 | +# name=test_regular_timeseries, chunks=None, compression=None, maxshape=(10,) |
| 198 | +# name=test_compressed_timeseries, chunks=(10,), compression=gzip, maxshape=(10,) |
| 199 | +# name=test_chunked_timeseries, chunks=(250, 5), compression=None, maxshape=(None, 10) |
| 200 | +# name=test_gzipped_timeseries, chunks=(250, 5), compression=gzip, maxshape=(1000, 10) |
| 201 | +# |
| 202 | +# As we can see, the datasets have been chunked and compressed correctly. Alos, as expected, chunking |
| 203 | +# was automatically enabled for the compressed datasets. |
| 204 | + |
| 205 | + |
| 206 | +#################### |
| 207 | +# Wrapping ``h5py.Datasets`` with :py:meth:`~pynwb.form.backends.hdf5.h5_utils.H5DataIO` |
| 208 | +# ------------------------------------------------------------------------------------------------ |
| 209 | +# |
| 210 | +# Just for completeness, :py:meth:`~pynwb.form.backends.hdf5.h5_utils.H5DataIO` also allows us to customize |
| 211 | +# how ``h5py.Dataset`` objects should be handled on write by the PyNWBs HDF5 backend via the ``link_data`` |
| 212 | +# parameter. If ``link_data`` is set to ``True`` then a ``SoftLink`` or ``ExternalLink`` will be created to |
| 213 | +# point to the HDF5 dataset On the other hand, if ``link_data`` is set to ``False`` then the dataset |
| 214 | +# be copied using `h5py.Group.copy <http://docs.h5py.org/en/latest/high/group.html#Group.copy>`__ |
| 215 | +# **without copying attributes** and **without expanding soft links, external links, or references**. |
| 216 | +# |
| 217 | +# .. note:: |
| 218 | +# |
| 219 | +# When wrapping an ``h5py.Dataset`` object using H5DataIO, then all settings except ``link_data`` |
| 220 | +# will be ignored as the h5py.Dataset will either be linked to or copied as on write. |
| 221 | +# |
| 222 | + |
| 223 | +#################### |
| 224 | +# Disclaimer |
| 225 | +# ---------------- |
| 226 | +# |
| 227 | +# External links included in the tutorial are being provided as a convenience and for informational purposes only; |
| 228 | +# they do not constitute an endorsement or an approval by the authors of any of the products, services or opinions of |
| 229 | +# the corporation or organization or individual. The authors bear no responsibility for the accuracy, legality or |
| 230 | +# content of the external site or for that of subsequent links. Contact the external site for answers to questions |
| 231 | +# regarding its content. |
0 commit comments