-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathhexapod_desktop_app.cpp
185 lines (166 loc) · 7.2 KB
/
hexapod_desktop_app.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/**
* S T E W A R T P L A T F O R M O N E S P 3 2
*
* Copyright (C) 2019 Nicolas Jeanmonod, ouilogique.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
// USER CHOICES
// Number of intervals
const double nb_intervals = 1;
// Reduce min/max
const double shrink = 3;
#include <iostream>
#include <fstream>
#include <sstream>
// #include <iomanip>
// #include <string>
#include <time.h>
#include "Hexapod_Kinematics.h"
using namespace std;
// Variables.
Hexapod_Kinematics hk; // Stewart platform object.
angle_t servo_angles[NB_SERVOS];
int movOK = -1;
ofstream angle_file;
double cpu_time_used;
double counter = 0;
// Print dimensions
const uint8_t SMALL_WIDTH = 7;
const uint8_t LARGE_WIDTH = 17;
const uint8_t ALL_WIDTH = 151; // 168;
time_t rawtime;
struct tm *timeinfo;
char buffer[80];
void calcAndPrintResults(platform_t coords)
{
const uint16_t averaging_count = 1000;
clock_t T0 = clock();
for (size_t _i = 0; _i < averaging_count; _i++)
{
// On mac M1, the computation takes about 1 µs which is hard to measure.
// So we loop several times to average the time.
movOK = hk.calcServoAngles(coords, servo_angles);
}
double deltaT = difftime(clock(), T0) / averaging_count;
cpu_time_used += deltaT;
counter++;
angle_file << fixed << setprecision(1) << setw(SMALL_WIDTH) << setfill(' ') << coords.hx_x;
angle_file << fixed << setprecision(1) << setw(SMALL_WIDTH) << setfill(' ') << coords.hx_y;
angle_file << fixed << setprecision(1) << setw(SMALL_WIDTH) << setfill(' ') << coords.hx_z;
angle_file << fixed << setprecision(1) << setw(SMALL_WIDTH) << setfill(' ') << degrees(coords.hx_a);
angle_file << fixed << setprecision(1) << setw(SMALL_WIDTH) << setfill(' ') << degrees(coords.hx_b);
angle_file << fixed << setprecision(1) << setw(SMALL_WIDTH) << setfill(' ') << degrees(coords.hx_c);
angle_file << fixed << setw(SMALL_WIDTH) << setfill(' ') << movOK;
// angle_file << fixed << setw(LARGE_WIDTH) << setfill(' ') << deltaT;
if (movOK >= 0)
{
for (uint8_t id = 0; id < NB_SERVOS; id++)
{
#define WHAT_TO_PRINT 2
#if WHAT_TO_PRINT == 1
angle_file << fixed << setprecision(6) << setw(LARGE_WIDTH) << setfill(' ') << servo_angles[id].deg;
#elif WHAT_TO_PRINT == 2
angle_file << fixed << setprecision(6) << setw(LARGE_WIDTH) << setfill(' ') << servo_angles[id].pwm_us;
#elif WHAT_TO_PRINT == 3
angle_file << fixed << setprecision(6) << setw(LARGE_WIDTH) << setfill(' ') << servo_angles[id].rad;
#elif WHAT_TO_PRINT == 4
angle_file << fixed << setprecision(6) << setw(LARGE_WIDTH) << setfill(' ') << servo_angles[id].debug;
#endif
}
}
angle_file << endl;
}
int main()
{
// Prepare file for output.
stringstream ss;
string file_name_str;
ss << "angles_with_config_" << HEXAPOD_CONFIG << "_cpp.txt";
file_name_str = ss.str();
char *fname = &file_name_str[0u];
angle_file.open(fname);
// Print column titles.
angle_file << fixed << setw(SMALL_WIDTH) << setfill(' ') << "X";
angle_file << fixed << setw(SMALL_WIDTH) << setfill(' ') << "Y";
angle_file << fixed << setw(SMALL_WIDTH) << setfill(' ') << "Z";
angle_file << fixed << setw(SMALL_WIDTH) << setfill(' ') << "A";
angle_file << fixed << setw(SMALL_WIDTH) << setfill(' ') << "B";
angle_file << fixed << setw(SMALL_WIDTH) << setfill(' ') << "C";
angle_file << fixed << setw(SMALL_WIDTH) << setfill(' ') << "movOK";
// angle_file << fixed << setw(LARGE_WIDTH) << setfill(' ') << "dT (us)";
angle_file << fixed << setw(LARGE_WIDTH) << setfill(' ') << "ANGLE 1";
angle_file << fixed << setw(LARGE_WIDTH) << setfill(' ') << "ANGLE 2";
angle_file << fixed << setw(LARGE_WIDTH) << setfill(' ') << "ANGLE 3";
angle_file << fixed << setw(LARGE_WIDTH) << setfill(' ') << "ANGLE 4";
angle_file << fixed << setw(LARGE_WIDTH) << setfill(' ') << "ANGLE 5";
angle_file << fixed << setw(LARGE_WIDTH) << setfill(' ') << "ANGLE 6";
// Print separator.
angle_file << endl;
angle_file << fixed << setw(ALL_WIDTH) << setfill('=') << "" << endl;
// 0
calcAndPrintResults({0, 0, 0, 0, 0, 0});
calcAndPrintResults({0, 0, HX_Z_MAX, 0, 0, 0});
calcAndPrintResults({0, 0, HX_Z_MIN, 0, 0, 0});
angle_file << fixed << setw(ALL_WIDTH) << setfill('=') << "" << endl;
// Compute and print angles in the respective min/max ranges.
for (double hx_x = HX_X_MIN / shrink; hx_x <= HX_X_MAX / shrink; hx_x += (HX_X_MAX - HX_X_MIN) / nb_intervals / shrink)
{
for (double hx_y = HX_Y_MIN / shrink; hx_y <= HX_Y_MAX / shrink; hx_y += (HX_Y_MAX - HX_Y_MIN) / nb_intervals / shrink)
{
for (double hx_z = HX_Z_MIN / shrink; hx_z <= HX_Z_MAX / shrink; hx_z += (HX_Z_MAX - HX_Z_MIN) / nb_intervals / shrink)
{
for (double hx_a = HX_A_MIN / shrink; hx_a <= HX_A_MAX / shrink; hx_a += (HX_A_MAX - HX_A_MIN) / nb_intervals / shrink)
{
for (double hx_b = HX_B_MIN / shrink; hx_b <= HX_B_MAX / shrink; hx_b += (HX_B_MAX - HX_B_MIN) / nb_intervals / shrink)
{
for (double hx_c = HX_C_MIN / shrink; hx_c <= HX_C_MAX / shrink; hx_c += (HX_C_MAX - HX_C_MIN) / nb_intervals / shrink)
{
calcAndPrintResults({hx_x, hx_y, hx_z, hx_a, hx_b, hx_c});
}
}
}
}
}
}
angle_file << "\n\nSTEWART PLATFORM\n";
// angle_file << "COMPILATION DATE AND TIME\n";
// time(&rawtime);
// timeinfo = localtime(&rawtime);
// strftime(buffer, 80, "%Y-%m-%d", timeinfo);
// angle_file << buffer << endl;
// strftime(buffer, 80, "%H:%M:%S", timeinfo);
// angle_file << buffer << endl;
angle_file << "HEXAPOD_CONFIG : " << HEXAPOD_CONFIG << endl;
angle_file << "ALGORITHM : " << ALGO << endl;
angle_file << "LANGAGE : C++" << endl;
cpu_time_used = cpu_time_used * 1.0E6 / CLOCKS_PER_SEC;
angle_file << fixed;
angle_file.precision(1);
angle_file << "Total time elapsed (µs) : " << cpu_time_used << endl;
angle_file.precision(3);
angle_file << "Time per calculation (µs) : " << cpu_time_used / counter << endl;
angle_file.precision(0);
angle_file << "Calculation count : " << counter << endl;
angle_file << endl;
// Done.
angle_file.close();
// Reopen and print results in the console.
freopen(fname, "rb", stdin);
string line;
while (getline(cin, line))
cout << line << endl;
return 0;
}