Skip to content
This repository was archived by the owner on Mar 17, 2021. It is now read-only.

Commit 4936b1f

Browse files
csudrewyli
authored andcommitted
remove nib saving from final layer
1 parent c77181b commit 4936b1f

File tree

1 file changed

+5
-37
lines changed

1 file changed

+5
-37
lines changed

niftynet/layer/rand_bias_field.py

Lines changed: 5 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -2,8 +2,6 @@
22
from __future__ import absolute_import, print_function
33

44
import numpy as np
5-
import scipy.ndimage
6-
import nibabel as nib
75

86
from niftynet.layer.base_layer import RandomisedLayer
97

@@ -70,7 +68,7 @@ def _generate_bias_field_map(self, shape):
7068
if spatial_rank == 3:
7169
z_range = np.arange(-shape[2] / 2, shape[2] / 2)
7270
x_mesh, y_mesh, z_mesh = np.asarray(np.meshgrid(x_range, y_range,
73-
z_range), dtype=float)
71+
z_range), dtype=float)
7472
x_mesh /= float(np.max(x_mesh))
7573
y_mesh /= float(np.max(y_mesh))
7674
z_mesh /= float(np.max(z_mesh))
@@ -80,8 +78,8 @@ def _generate_bias_field_map(self, shape):
8078
rand_coeff = self._bf_coeffs[i]
8179

8280
new_map = rand_coeff * np.power(x_mesh, order_x) * \
83-
np.power(y_mesh, order_y) * \
84-
np.power(z_mesh, order_z)
81+
np.power(y_mesh, order_y) * \
82+
np.power(z_mesh, order_z)
8583
# print(np.asarray(np.where(np.abs(new_map) >
8684
# 0)).shape, np.unique(
8785
# new_map).shape)
@@ -96,7 +94,7 @@ def _generate_bias_field_map(self, shape):
9694
for order_y in range(0, self.order+1 - order_x):
9795
rand_coeff = self._bf_coeffs[i]
9896
new_map = rand_coeff * np.power(x_mesh, order_x) * \
99-
np.power(y_mesh, order_y)
97+
np.power(y_mesh, order_y)
10098
bf_map += np.transpose(new_map, (1, 0))
10199
i += 1
102100
return np.exp(bf_map)
@@ -112,16 +110,7 @@ def _apply_transformation(self, image):
112110
'''
113111
assert self._bf_coeffs is not None
114112
bf_map = self._generate_bias_field_map(image.shape)
115-
print(np.asarray(np.where(np.abs(bf_map)>0)).shape)
116113
bf_image = image * bf_map
117-
print(bf_image.shape, image.shape, np.max(bf_image), np.max(image),
118-
np.max(bf_map), np.min(bf_map))
119-
bf_nii = nib.Nifti1Image(bf_map, np.diag([1,1,1,1]))
120-
bf_image_nii = nib.Nifti1Image(bf_image, np.diag([1,1,1,1]))
121-
image_nii = nib.Nifti1Image(image, np.diag([1,1,1,1]))
122-
nib.save(bf_nii, './TestBF.nii.gz')
123-
nib.save(bf_image_nii, './TestModif.nii.gz')
124-
nib.save(image_nii, './InitModify.nii.gz')
125114
return bf_image
126115

127116
def layer_op(self, inputs, interp_orders, *args, **kwargs):
@@ -144,25 +133,4 @@ def layer_op(self, inputs, interp_orders, *args, **kwargs):
144133
raise NotImplementedError("unknown input format")
145134
return inputs
146135

147-
# if inputs.spatial_rank == 3:
148-
# if inputs.data.ndim == 4:
149-
# for mod_i in range(inputs.data.shape[-1]):
150-
# inputs.data[..., mod_i] = self._apply_transformation_3d(
151-
# inputs.data[..., mod_i], inputs.interp_order)
152-
# if inputs.data.ndim == 5:
153-
# for t in range(inputs.data.shape[-1]):
154-
# for mod_i in range(inputs.data.shape[-2]):
155-
# inputs.data[..., mod_i, t] = \
156-
# self._apply_transformation_3d(
157-
# inputs.data[..., mod_i, t], inputs.interp_order)
158-
# if inputs.interp_order > 0:
159-
# inputs.data = inputs.data.astype(np.float)
160-
# elif inputs.interp_order == 0:
161-
# inputs.data = inputs.data.astype(np.int64)
162-
# else:
163-
# raise ValueError('negative interpolation order')
164-
# return inputs
165-
# else:
166-
# # TODO: rotation for spatial_rank is 2
167-
# # currently not supported 2/2.5D rand rotation
168-
# return inputs
136+

0 commit comments

Comments
 (0)