Skip to content
This repository was archived by the owner on Mar 17, 2021. It is now read-only.

Commit e6de35b

Browse files
authored
Merge pull request #217 from NifTK/se_block
ChannelSELayer, SpatialSELayer, and ChannelSpatialSELayer.
2 parents f3b8cda + 92a8e3e commit e6de35b

File tree

5 files changed

+338
-176
lines changed

5 files changed

+338
-176
lines changed
Lines changed: 128 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,128 @@
1+
# -*- coding: utf-8 -*-
2+
from __future__ import absolute_import, print_function
3+
4+
import tensorflow as tf
5+
6+
from niftynet.layer.base_layer import Layer
7+
from niftynet.layer.fully_connected import FullyConnectedLayer
8+
from niftynet.layer.convolution import ConvolutionalLayer
9+
from niftynet.utilities.util_common import look_up_operations
10+
11+
SUPPORTED_OP = set(['AVG', 'MAX'])
12+
13+
14+
class ChannelSELayer(Layer):
15+
"""
16+
Re-implementation of Squeeze-and-Excitation (SE) block described in::
17+
18+
Hu et al., Squeeze-and-Excitation Networks, arXiv:1709.01507
19+
"""
20+
def __init__(self,
21+
func='AVG',
22+
reduction_ratio=16,
23+
name='channel_squeeze_excitation'):
24+
self.func = func.upper()
25+
self.reduction_ratio = reduction_ratio
26+
super(ChannelSELayer, self).__init__(name=name)
27+
28+
look_up_operations(self.func, SUPPORTED_OP)
29+
30+
def layer_op(self, input_tensor):
31+
# spatial squeeze
32+
input_rank = len(input_tensor.shape)
33+
reduce_indices = list(range(input_rank))[1:-1]
34+
if self.func == 'AVG':
35+
squeeze_tensor = tf.reduce_mean(input_tensor, axis=reduce_indices)
36+
elif self.func == 'MAX':
37+
squeeze_tensor = tf.reduce_max(input_tensor, axis=reduce_indices)
38+
else:
39+
raise NotImplementedError("pooling function not supported")
40+
41+
# channel excitation
42+
num_channels = int(squeeze_tensor.shape[-1])
43+
reduction_ratio = self.reduction_ratio
44+
if num_channels % reduction_ratio != 0:
45+
raise ValueError(
46+
"reduction ratio incompatible with "
47+
"number of input tensor channels")
48+
49+
num_channels_reduced = num_channels / reduction_ratio
50+
fc1 = FullyConnectedLayer(num_channels_reduced,
51+
with_bias=False,
52+
with_bn=False,
53+
acti_func='relu',
54+
name='se_fc_1')
55+
fc2 = FullyConnectedLayer(num_channels,
56+
with_bias=False,
57+
with_bn=False,
58+
acti_func='sigmoid',
59+
name='se_fc_2')
60+
61+
fc_out_1 = fc1(squeeze_tensor)
62+
fc_out_2 = fc2(fc_out_1)
63+
64+
while len(fc_out_2.shape) < input_rank:
65+
fc_out_2 = tf.expand_dims(fc_out_2, axis=1)
66+
67+
output_tensor = tf.multiply(input_tensor, fc_out_2)
68+
69+
return output_tensor
70+
71+
72+
class SpatialSELayer(Layer):
73+
"""
74+
Re-implementation of SE block -- squeezing spatially
75+
and exciting channel-wise described in::
76+
77+
Roy et al., Concurrent Spatial and Channel Squeeze & Excitation
78+
in Fully Convolutional Networks, arXiv:1803.02579
79+
80+
"""
81+
def __init__(self,
82+
name='spatial_squeeze_excitation'):
83+
super(SpatialSELayer, self).__init__(name=name)
84+
85+
def layer_op(self, input_tensor):
86+
# channel squeeze
87+
conv = ConvolutionalLayer(n_output_chns=1,
88+
kernel_size=1,
89+
with_bn=False,
90+
acti_func='sigmoid',
91+
name="se_conv")
92+
93+
squeeze_tensor = conv(input_tensor)
94+
95+
# spatial excitation
96+
output_tensor = tf.multiply(input_tensor, squeeze_tensor)
97+
98+
return output_tensor
99+
100+
101+
class ChannelSpatialSELayer(Layer):
102+
"""
103+
Re-implementation of concurrent spatial and channel
104+
squeeze & excitation::
105+
106+
Roy et al., Concurrent Spatial and Channel Squeeze & Excitation
107+
in Fully Convolutional Networks, arXiv:1803.02579
108+
109+
"""
110+
def __init__(self,
111+
func='AVG',
112+
reduction_ratio=16,
113+
name='channel_spatial_squeeze_excitation'):
114+
self.func = func.upper()
115+
self.reduction_ratio = reduction_ratio
116+
super(ChannelSpatialSELayer, self).__init__(name=name)
117+
118+
look_up_operations(self.func, SUPPORTED_OP)
119+
120+
def layer_op(self, input_tensor):
121+
cSE = ChannelSELayer(func=self.func,
122+
reduction_ratio=self.reduction_ratio,
123+
name='cSE')
124+
sSE = SpatialSELayer(name='sSE')
125+
126+
output_tensor = tf.add(cSE(input_tensor), sSE(input_tensor))
127+
128+
return output_tensor

niftynet/layer/squeeze_excitation_layer.py

Lines changed: 0 additions & 64 deletions
This file was deleted.

niftynet/network/se_resnet.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010
from niftynet.layer.fully_connected import FCLayer
1111
from niftynet.layer.base_layer import TrainableLayer
1212
from niftynet.layer.convolution import ConvolutionalLayer
13-
from niftynet.layer.squeeze_excitation_layer import SELayer
13+
from niftynet.layer.squeeze_excitation import ChannelSELayer
1414
from niftynet.network.base_net import BaseNet
1515

1616
SE_ResNetDesc = namedtuple('SE_ResNetDesc', ['bn', 'fc', 'conv1', 'blocks'])
@@ -98,7 +98,7 @@ def create(self, input_chns):
9898

9999
def layer_op(self, images, is_training=True):
100100
layers = self.create(images.shape[-1])
101-
se=SELayer()
101+
se=ChannelSELayer()
102102
if self.n_output_chns == images.shape[-1]:
103103
out=layers.conv[0](images, is_training)
104104
out=layers.conv[1](out, is_training)

tests/squeeze_excitation_layer_test.py

Lines changed: 0 additions & 110 deletions
This file was deleted.

0 commit comments

Comments
 (0)