Skip to content

Commit af30f38

Browse files
committed
added agentic RAG
1 parent 6e3dee3 commit af30f38

File tree

4 files changed

+2304
-10
lines changed

4 files changed

+2304
-10
lines changed

README.md

Lines changed: 22 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ We gratefully acknowledge the organizations and individuals who have made signif
1515

1616
**Company Sponsors**
1717

18-
<a href="https://zilliz.com" target="_blank"><img src="images/ziliz_logo.png" style="border-radius: 12px; margin-right: 24px; vertical-align: middle;" height="96" alt="Zilliz: Key Collaborator"></a>
18+
<a href="https://contextual.ai" target="_blank"><img src="images/trimmed_padded_contextual_white.png#gh-light-mode-only" style="border-radius: 12px; margin-right: 24px; vertical-align: middle;" height="96" alt="Contextual AI: Key Collaborator"><img src="images/trimmed_padded_contextual_black.png#gh-dark-mode-only" style="border-radius: 12px; margin-right: 24px; vertical-align: middle;" height="96" alt="Contextual AI: Key Collaborator"></a>
1919

2020
**Individual Sponsors**
2121

@@ -88,7 +88,7 @@ Explore our extensive list of cutting-edge RAG techniques:
8888

8989
| # | Category | Technique | View |
9090
|---|----------|-----------|------|
91-
| 1 | ⭐ Key Collaboration | Graph RAG with Milvus Vector DB | [<img src="https://img.shields.io/badge/GitHub-View-blue" height="20">](https://github.com/NirDiamant/RAG_TECHNIQUES/blob/main/all_rag_techniques/graphrag_with_milvus_vectordb.ipynb) [<img src="https://colab.research.google.com/assets/colab-badge.svg" height="20">](https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/graphrag_with_milvus_vectordb.ipynb) |
91+
| 1 | ⭐ Key Collaboration | Agentic RAG with Contextual AI | [<img src="https://img.shields.io/badge/GitHub-View-blue" height="20">](https://github.com/NirDiamant/RAG_TECHNIQUES/blob/main/all_rag_techniques/Agentic_RAG.ipynb) [<img src="https://colab.research.google.com/assets/colab-badge.svg" height="20">](https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/Agentic_RAG.ipynb) |
9292
| 2 | Foundational 🌱 | Basic RAG | [<img src="https://img.shields.io/badge/GitHub-View-blue" height="20">](https://github.com/NirDiamant/RAG_TECHNIQUES/blob/main/all_rag_techniques/simple_rag.ipynb) [<img src="https://colab.research.google.com/assets/colab-badge.svg" height="20">](https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/simple_rag.ipynb) |
9393
| 3 | Foundational 🌱 | RAG with CSV Files | [<img src="https://img.shields.io/badge/GitHub-View-blue" height="20">](https://github.com/NirDiamant/RAG_TECHNIQUES/blob/main/all_rag_techniques/simple_csv_rag.ipynb) [<img src="https://colab.research.google.com/assets/colab-badge.svg" height="20">](https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/simple_csv_rag.ipynb) |
9494
| 4 | Foundational 🌱 | Reliable RAG | [<img src="https://img.shields.io/badge/GitHub-View-blue" height="20">](https://github.com/NirDiamant/RAG_TECHNIQUES/blob/main/all_rag_techniques/reliable_rag.ipynb) [<img src="https://colab.research.google.com/assets/colab-badge.svg" height="20">](https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/reliable_rag.ipynb) |
@@ -429,8 +429,20 @@ Explore our extensive list of cutting-edge RAG techniques:
429429

430430
### 🏗️ Advanced Architectures
431431

432-
28. Graph RAG with Milvus Vector Database 🔍
433-
- **Graph RAG with Milvus**: [<img src="https://img.shields.io/badge/GitHub-View-blue" height="20">](https://github.com/NirDiamant/RAG_TECHNIQUES/blob/main/https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/graphrag_with_milvus_vectordb.ipynb) [<img src="https://colab.research.google.com/assets/colab-badge.svg" height="20">](https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/graphrag_with_milvus_vectordb.ipynb)
432+
28. Agentic RAG with Contextual AI 🤖
433+
- **Agentic RAG**: [<img src="https://img.shields.io/badge/GitHub-View-blue" height="20">](https://github.com/NirDiamant/RAG_TECHNIQUES/blob/main/all_rag_techniques/Agentic_RAG.ipynb) [<img src="https://colab.research.google.com/assets/colab-badge.svg" height="20">](https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/Agentic_RAG.ipynb)
434+
435+
#### Overview 🔎
436+
Building production-ready agentic RAG pipelines for financial document analysis with Contextual AI's managed platform. This comprehensive tutorial demonstrates how to leverage agentic RAG to solve complex queries through intelligent query reformulation, document parsing, reranking, and grounded language models.
437+
438+
#### Implementation 🛠️
439+
- **Document Parser**: Enterprise-grade parsing with vision models for complex tables, charts, and multi-page documents
440+
- **Instruction-Following Reranker**: SOTA reranker with instruction-following capabilities for handling conflicting information
441+
- **Grounded Language Model (GLM)**: World's most grounded LLM specifically engineered to minimize hallucinations for RAG use cases
442+
- **LMUnit**: Natural language unit testing framework for evaluating and optimizing RAG system performance
443+
444+
29. Graph RAG with Milvus Vector Database 🔍
445+
- **Graph RAG with Milvus**: [<img src="https://img.shields.io/badge/GitHub-View-blue" height="20">](https://github.com/NirDiamant/RAG_TECHNIQUES/blob/main/all_rag_techniques/graphrag_with_milvus_vectordb.ipynb) [<img src="https://colab.research.google.com/assets/colab-badge.svg" height="20">](https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/graphrag_with_milvus_vectordb.ipynb)
434446

435447
#### Overview 🔎
436448
A simple yet powerful approach to implement Graph RAG using Milvus vector databases. This technique significantly improves performance on complex multi-hop questions by combining relationship-based retrieval with vector search and reranking.
@@ -441,7 +453,7 @@ Explore our extensive list of cutting-edge RAG techniques:
441453
- Use an LLM to rerank retrieved relationships based on their relevance to the query
442454
- Retrieve the final passages based on the most relevant relationships
443455

444-
29. Knowledge Graph Integration (Graph RAG) 🕸️
456+
30. Knowledge Graph Integration (Graph RAG) 🕸️
445457
- **LangChain**: [<img src="https://img.shields.io/badge/GitHub-View-blue" height="20">](https://github.com/NirDiamant/RAG_TECHNIQUES/blob/main/https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/graph_rag.ipynb) [<img src="https://colab.research.google.com/assets/colab-badge.svg" height="20">](https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/graph_rag.ipynb)
446458
- **[Runnable Script](all_rag_techniques_runnable_scripts/graph_rag.py)**
447459

@@ -451,7 +463,7 @@ Explore our extensive list of cutting-edge RAG techniques:
451463
#### Implementation 🛠️
452464
Retrieve entities and their relationships from a knowledge graph relevant to the query, combining this structured data with unstructured text for more informative responses.
453465

454-
30. GraphRag (Microsoft) 🎯
466+
31. GraphRag (Microsoft) 🎯
455467
- **GraphRag**: [<img src="https://img.shields.io/badge/GitHub-View-blue" height="20">](https://github.com/NirDiamant/RAG_TECHNIQUES/blob/main/https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/Microsoft_GraphRag.ipynb) [<img src="https://colab.research.google.com/assets/colab-badge.svg" height="20">](https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/Microsoft_GraphRag.ipynb)
456468

457469
#### Overview 🔎
@@ -460,7 +472,7 @@ Explore our extensive list of cutting-edge RAG techniques:
460472
#### Implementation 🛠️
461473
• Analyze an input corpus by extracting entities, relationships from text units. generates summaries of each community and its constituents from the bottom-up.
462474

463-
31. RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval 🌳
475+
32. RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval 🌳
464476
- **LangChain**: [<img src="https://img.shields.io/badge/GitHub-View-blue" height="20">](https://github.com/NirDiamant/RAG_TECHNIQUES/blob/main/https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/raptor.ipynb) [<img src="https://colab.research.google.com/assets/colab-badge.svg" height="20">](https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/raptor.ipynb)
465477
- **[Runnable Script](all_rag_techniques_runnable_scripts/raptor.py)**
466478

@@ -470,7 +482,7 @@ Explore our extensive list of cutting-edge RAG techniques:
470482
#### Implementation 🛠️
471483
Use abstractive summarization to recursively process and summarize retrieved documents, organizing the information in a tree structure for hierarchical context.
472484

473-
32. Self RAG 🔁
485+
33. Self RAG 🔁
474486
- **LangChain**: [<img src="https://img.shields.io/badge/GitHub-View-blue" height="20">](https://github.com/NirDiamant/RAG_TECHNIQUES/blob/main/https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/self_rag.ipynb) [<img src="https://colab.research.google.com/assets/colab-badge.svg" height="20">](https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/self_rag.ipynb)
475487
- **[Runnable Script](all_rag_techniques_runnable_scripts/self_rag.py)**
476488

@@ -480,7 +492,7 @@ Explore our extensive list of cutting-edge RAG techniques:
480492
#### Implementation 🛠️
481493
• Implement a multi-step process including retrieval decision, document retrieval, relevance evaluation, response generation, support assessment, and utility evaluation to produce accurate, relevant, and useful outputs.
482494

483-
33. Corrective RAG 🔧
495+
34. Corrective RAG 🔧
484496
- **LangChain**: [<img src="https://img.shields.io/badge/GitHub-View-blue" height="20">](https://github.com/NirDiamant/RAG_TECHNIQUES/blob/main/https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/crag.ipynb) [<img src="https://colab.research.google.com/assets/colab-badge.svg" height="20">](https://colab.research.google.com/github/NirDiamant/RAG_Techniques/blob/main/all_rag_techniques/crag.ipynb)
485497
- **[Runnable Script](all_rag_techniques_runnable_scripts/crag.py)**
486498

@@ -492,7 +504,7 @@ Explore our extensive list of cutting-edge RAG techniques:
492504

493505
## 🌟 Special Advanced Technique 🌟
494506

495-
34. **[Sophisticated Controllable Agent for Complex RAG Tasks 🤖](https://github.com/NirDiamant/Controllable-RAG-Agent)**
507+
35. **[Sophisticated Controllable Agent for Complex RAG Tasks 🤖](https://github.com/NirDiamant/Controllable-RAG-Agent)**
496508

497509
#### Overview 🔎
498510
An advanced RAG solution designed to tackle complex questions that simple semantic similarity-based retrieval cannot solve. This approach uses a sophisticated deterministic graph as the "brain" 🧠 of a highly controllable autonomous agent, capable of answering non-trivial questions from your own data.

0 commit comments

Comments
 (0)