Skip to content

Commit 9ce7290

Browse files
author
OVVO-Financial
committed
NNS 11.2 Beta
1 parent 5f295ad commit 9ce7290

15 files changed

+26
-15
lines changed

DESCRIPTION

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
Package: NNS
22
Type: Package
33
Title: Nonlinear Nonparametric Statistics
4-
Version: 11.1
5-
Date: 2025-02-17
4+
Version: 11.2
5+
Date: 2025-03-11
66
Authors@R: c(
77
person("Fred", "Viole", role=c("aut","cre"), email="[email protected]"),
88
person("Roberto", "Spadim", role=c("ctb"))

NNS_11.1.tar.gz

-1.18 MB
Binary file not shown.

NNS_11.1.zip

-860 KB
Binary file not shown.

NNS_11.2.tar.gz

1.18 MB
Binary file not shown.

NNS_11.2.zip

860 KB
Binary file not shown.

R/ARMA_optim.R

+3-1
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@
3333
#'}
3434
#' @note
3535
#' \itemize{
36-
#' \item{} Typically, \code{(training.set = 0.8 * length(variable)} is used for optimization. Smaller samples could use \code{(training.set = 0.9 * length(variable))} (or larger) in order to preserve information.
36+
#' \item{} Typically, \code{(training.set = 0.8 * length(variable))} is used for optimization. Smaller samples could use \code{(training.set = 0.9 * length(variable))} (or larger) in order to preserve information.
3737
#'
3838
#' \item{} The number of combinations will grow prohibitively large, they should be kept as small as possible. \code{seasonal.factor} containing an element too large will result in an error. Please reduce the maximum \code{seasonal.factor}.
3939
#'
@@ -473,6 +473,8 @@ NNS.ARMA.optim <- function(variable,
473473
model.results <- pmax(0, model.results)
474474
lower_PIs <- pmax(0, lower_PIs)
475475
upper_PIs <- pmax(0, upper_PIs)
476+
lower_PIs_is <- pmax(0, lower_PIs_is)
477+
upper_PIs_is <- pmax(0, upper_PIs_is)
476478
}
477479

478480
if(plot){

R/Copula.R

+3-5
Original file line numberDiff line numberDiff line change
@@ -61,10 +61,10 @@ NNS.copula <- function (
6161

6262

6363
# Isolate the upper triangles from each of the partial moment matrices
64-
continuous_Co_pm <- sum(continuous_pm_cov$cupm[upper.tri(continuous_pm_cov$cupm, diag = FALSE)]) + sum(continuous_pm_cov$clpm[upper.tri(continuous_pm_cov$clpm, diag = FALSE)])
65-
continuous_D_pm <- sum(continuous_pm_cov$dupm[upper.tri(continuous_pm_cov$dupm, diag = FALSE)]) + sum(continuous_pm_cov$dlpm[upper.tri(continuous_pm_cov$dlpm, diag = FALSE)])
64+
continuous_Co_pm <- sum(continuous_pm_cov$cupm[upper.tri(continuous_pm_cov$cupm, diag = FALSE)]) + sum(continuous_pm_cov$clpm[upper.tri(continuous_pm_cov$clpm, diag = FALSE)])
65+
continuous_D_pm <- sum(continuous_pm_cov$dupm[upper.tri(continuous_pm_cov$dupm, diag = FALSE)]) + sum(continuous_pm_cov$dlpm[upper.tri(continuous_pm_cov$dlpm, diag = FALSE)])
6666

67-
discrete_Co_pm <- sum(discrete_pm_cov$cupm[upper.tri(discrete_pm_cov$cupm, diag = FALSE)]) + sum(discrete_pm_cov$clpm[upper.tri(discrete_pm_cov$clpm, diag = FALSE)])
67+
discrete_Co_pm <- sum(discrete_pm_cov$cupm[upper.tri(discrete_pm_cov$cupm, diag = FALSE)]) + sum(discrete_pm_cov$clpm[upper.tri(discrete_pm_cov$clpm, diag = FALSE)])
6868
discrete_D_pm <- sum(discrete_pm_cov$dupm[upper.tri(discrete_pm_cov$dupm, diag = FALSE)]) + sum(discrete_pm_cov$dlpm[upper.tri(discrete_pm_cov$dlpm, diag = FALSE)])
6969

7070

@@ -108,8 +108,6 @@ NNS.copula <- function (
108108

109109
if(continuous_Co_pm == continuous_D_pm) return(mean(c(0, discrete_dep)))
110110
if(continuous_Co_pm==0 || continuous_D_pm==0) return(mean(c(1, discrete_dep)))
111-
112-
113111

114112
if(continuous_Co_pm < continuous_D_pm) return(mean(c((1 - (continuous_Co_pm/continuous_D_pm)), discrete_dep)))
115113
if(continuous_Co_pm > continuous_D_pm) return(mean(c((1 - (continuous_D_pm/continuous_Co_pm)), discrete_dep)))

R/SD_Cluster.R

-1
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,6 @@
4242
#'
4343
#' # Produce a dendrogram as well
4444
#' results_with_dendro <- NNS.SD.cluster(data = A, degree = 1, min_cluster = 2, dendrogram = TRUE)
45-
#' plot(results_with_dendro$Dendrogram)
4645
#' }
4746
#'
4847
#' @export

README.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33

44

55

6-
[![packageversion](https://img.shields.io/badge/NNS%20version-11.1-blue.svg?style=flat-square)](https://github.com/OVVO-Financial/NNS/commits/NNS-Beta-Version) [![Licence](https://img.shields.io/badge/licence-GPL--3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0.en.html)
6+
[![packageversion](https://img.shields.io/badge/NNS%20version-11.2-blue.svg?style=flat-square)](https://github.com/OVVO-Financial/NNS/commits/NNS-Beta-Version) [![Licence](https://img.shields.io/badge/licence-GPL--3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0.en.html)
77

88
<h2 style="margin: 0; padding: 0; border: none; height: 40px;"></h2>
99

@@ -56,7 +56,7 @@ Please see https://github.com/OVVO-Financial/NNS/blob/NNS-Beta-Version/examples/
5656
title = {NNS: Nonlinear Nonparametric Statistics},
5757
author = {Fred Viole},
5858
year = {2016},
59-
note = {R package version 11.1},
59+
note = {R package version 11.2},
6060
url = {https://CRAN.R-project.org/package=NNS},
6161
}
6262
```

doc/NNSvignette_Comparing_Distributions.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -624,7 +624,7 @@ <h2>Stochastic Dominant Clusters</h2>
624624
<p>Further, we can assign clusters to non dominated constituents and
625625
represent the clustering in a dendrogram.</p>
626626
<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" tabindex="-1"></a><span class="fu">NNS.SD.cluster</span>(<span class="fu">cbind</span>(x1, x2, x3, x4, x5, x6, x7, x8), <span class="at">degree =</span> <span class="dv">1</span>, <span class="at">dendrogram =</span> <span class="cn">TRUE</span>)</span></code></pre></div>
627-
<p><img src="" style="display: block; margin: auto;" /></p>
627+
<p><img src="" style="display: block; margin: auto;" /></p>
628628
<pre><code>## $Clusters
629629
## $Clusters$Cluster_1
630630
## [1] &quot;x4&quot; &quot;x2&quot; &quot;x8&quot; &quot;x6&quot;

man/NNS.ARMA.optim.Rd

+1-1
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

man/NNS.SD.cluster.Rd

-1
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

src/NNS.dll

0 Bytes
Binary file not shown.

src/central_tendencies.h

+13
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,13 @@
1+
// central_tendencies.h
2+
#ifndef CENTRAL_TENDENCIES_H
3+
#define CENTRAL_TENDENCIES_H
4+
5+
#include <Rcpp.h>
6+
using namespace Rcpp;
7+
8+
// Declare the functions without default values
9+
double NNS_gravity_cpp(NumericVector x, bool discrete);
10+
NumericVector NNS_mode_cpp(NumericVector x, bool discrete, bool multi);
11+
12+
#endif
13+

0 commit comments

Comments
 (0)