Skip to content

Commit ce05056

Browse files
author
OVVO-Financial
committed
NNS 10.9.4 Beta
1 parent 271abc4 commit ce05056

36 files changed

+272
-253
lines changed

DESCRIPTION

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
Package: NNS
22
Type: Package
33
Title: Nonlinear Nonparametric Statistics
4-
Version: 10.9.3
5-
Date: 2024-10-14
4+
Version: 10.9.4
5+
Date: 2024-12-02
66
Authors@R: c(
77
person("Fred", "Viole", role=c("aut","cre"), email="[email protected]"),
88
person("Roberto", "Spadim", role=c("ctb"))

NNS_10.9.3.tar.gz

-1.16 MB
Binary file not shown.

NNS_10.9.3.zip

-843 KB
Binary file not shown.

NNS_10.9.4.tar.gz

1.34 MB
Binary file not shown.

NNS_10.9.4.zip

844 KB
Binary file not shown.

R/NNS_MC.R

+5-3
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,8 @@
99
#' @param by numeric; \code{.01} default will set the \code{by} argument in \code{seq(-1, 1, step)}.
1010
#' @param exp numeric; \code{1} default will exponentially weight maximum rho value if \code{exp > 1}. Shrinks values towards \code{upper_rho}.
1111
#' @param type options("spearman", "pearson", "NNScor", "NNSdep"); \code{type = "spearman"}(default) dependence metric desired.
12-
#' @param drift logical; \code{TRUE} default preserves the drift of the original series.
12+
#' @param drift logical; \code{drift = TRUE} (default) preserves the drift of the original series.
13+
#' @param target_drift numerical; code{NULL} (default) Specifies the desired drift when \code{drift = TRUE}, i.e. a risk-free rate of return.
1314
#' @param xmin numeric; the lower limit for the left tail.
1415
#' @param xmax numeric; the upper limit for the right tail.
1516
#' @param ... possible additional arguments to be passed to \link{NNS.meboot}.
@@ -38,6 +39,7 @@ NNS.MC <- function(x,
3839
exp = 1,
3940
type = "spearman",
4041
drift = TRUE,
42+
target_drift = NULL,
4143
xmin = NULL,
4244
xmax = NULL, ...){
4345

@@ -51,8 +53,8 @@ NNS.MC <- function(x,
5153
exp_rhos <- rev(c((neg_rhos^exp)*-1, pos_rhos^(1/exp)))
5254

5355

54-
samples <- suppressWarnings(NNS.meboot(x = x, reps = reps, rho = exp_rhos, type = type, drift = drift,
55-
xmin = xmin, xmax = xmax, ...))
56+
samples <- suppressWarnings(NNS.meboot(x = x, reps = reps, rho = exp_rhos, type = type,
57+
drift = drift, target_drift = target_drift, xmin = xmin, xmax = xmax, ...))
5658

5759
replicates <- samples["replicates",]
5860

R/NNS_meboot.R

+58-49
Original file line numberDiff line numberDiff line change
@@ -6,14 +6,15 @@
66
#' @param reps numeric; number of replicates to generate.
77
#' @param rho numeric [-1,1] (vectorized); A \code{rho} must be provided, otherwise a blank list will be returned.
88
#' @param type options("spearman", "pearson", "NNScor", "NNSdep"); \code{type = "spearman"}(default) dependence metric desired.
9-
#' @param drift logical; \code{TRUE} default preserves the drift of the original series.
10-
#' @param trim numeric [0,1]; The mean trimming proportion, defaults to \code{trim=0.1}.
9+
#' @param drift logical; \code{drift = TRUE} (default) preserves the drift of the original series.
10+
#' @param target_drift numerical; code{NULL} (default) Specifies the desired drift when \code{drift = TRUE}, i.e. a risk-free rate of return.
11+
#' @param trim numeric [0,1]; The mean trimming proportion, defaults to \code{trim = 0.1}.
1112
#' @param xmin numeric; the lower limit for the left tail.
1213
#' @param xmax numeric; the upper limit for the right tail.
1314
#' @param reachbnd logical; If \code{TRUE} potentially reached bounds (xmin = smallest value - trimmed mean and
1415
#' xmax = largest value + trimmed mean) are given when the random draw happens to be equal to 0 and 1, respectively.
15-
#' @param expand.sd logical; If \code{TRUE} the standard deviation in the ensemble is expanded. See \code{expand.sd} in meboot::meboot.
16-
#' @param force.clt logical; If \code{TRUE} the ensemble is forced to satisfy the central limit theorem. See \code{force.clt} in meboot::meboot.
16+
#' @param expand.sd logical; If \code{TRUE} the standard deviation in the ensemble is expanded. See \code{expand.sd} in \code{meboot::meboot}.
17+
#' @param force.clt logical; If \code{TRUE} the ensemble is forced to satisfy the central limit theorem. See \code{force.clt} in \code{meboot::meboot}.
1718
#' @param scl.adjustment logical; If \code{TRUE} scale adjustment is performed to ensure that the population variance of the transformed series equals the variance of the data.
1819
#' @param sym logical; If \code{TRUE} an adjustment is performed to ensure that the ME density is symmetric.
1920
#' @param elaps logical; If \code{TRUE} elapsed time during computations is displayed.
@@ -59,27 +60,28 @@
5960
#' boots <- NNS.meboot(AirPassengers, reps=100, rho = 0, xmin = 0)
6061
#'
6162
#' # Verify correlation of replicates ensemble to original
62-
#' cor(boots["ensemble",], AirPassengers, method = "spearman")
63+
#' cor(boots["ensemble",]$ensemble, AirPassengers, method = "spearman")
6364
#'
6465
#' # Plot all replicates
65-
#' matplot(boots["replicates",] , type = 'l')
66+
#' matplot(boots["replicates",]$replicates , type = 'l')
6667
#'
6768
#' # Plot ensemble
68-
#' lines(boots["ensemble",], lwd = 3)
69+
#' lines(boots["ensemble",]$ensemble, lwd = 3)
6970
#' }
7071
#' @export
7172

7273
NNS.meboot <- function(x,
73-
reps=999,
74-
rho=NULL,
75-
type="spearman",
76-
drift=TRUE,
77-
trim=0.10,
78-
xmin=NULL,
79-
xmax=NULL,
80-
reachbnd=TRUE,
81-
expand.sd=TRUE, force.clt=TRUE,
82-
scl.adjustment = FALSE, sym = FALSE, elaps=FALSE,
74+
reps = 999,
75+
rho = NULL,
76+
type = "spearman",
77+
drift = TRUE,
78+
target_drift = NULL,
79+
trim = 0.10,
80+
xmin = NULL,
81+
xmax = NULL,
82+
reachbnd = TRUE,
83+
expand.sd = TRUE, force.clt = TRUE,
84+
scl.adjustment = FALSE, sym = FALSE, elaps = FALSE,
8385
digits = 6,
8486
colsubj, coldata, coltimes,...)
8587
{
@@ -206,47 +208,48 @@
206208
m <- c(matrix2)
207209
l <- length(e)
208210

209-
func <- function(ab, d=drift, ty=type){
211+
func <- function(ab, d = drift, ty = type) {
210212
a <- ab[1]
211213
b <- ab[2]
212-
213-
if(ty=="spearman" || ty=="pearson"){
214-
ifelse(d,
215-
(abs(cor((a*m + b*e)/(a + b), e, method = ty) - rho) +
216-
abs(mean((a*m + b*e))/mean(e) - 1) +
217-
abs( cor((a*m + b*e)/(a + b), 1:l) - cor(e, 1:l))
218-
),
219-
abs(cor((a*m + b*e)/(a + b), e, method = ty) - rho) +
220-
abs(mean((a*m + b*e))/mean(e) - 1)
221-
)
214+
215+
# Compute the adjusted ensemble
216+
combined <- (a * m + b * e) / (a + b)
217+
218+
# Check correlation or dependence structure
219+
if (ty == "spearman" || ty == "pearson") {
220+
error <- abs(cor(combined, e, method = ty) - rho)
221+
} else if (ty == "nnsdep") {
222+
error <- abs(NNS.dep(combined, e)$Dependence - rho)
222223
} else {
223-
if(ty=="nnsdep"){
224-
ifelse(d,
225-
(abs(NNS.dep((a*m + b*e)/(a + b), e)$Dependence - rho) +
226-
abs(mean((a*m + b*e))/mean(e) - 1) +
227-
abs( NNS.dep((a*m + b*e)/(a + b), 1:l)$Dependence - NNS.dep(e, 1:l)$Dependence)
228-
),
229-
abs(NNS.dep((a*m + b*e)/(a + b), e)$Dependence - rho) +
230-
abs(mean((a*m + b*e))/mean(e) - 1)
231-
)
232-
} else {
233-
ifelse(d,
234-
(abs(NNS.dep((a*m + b*e)/(a + b), e)$Correlation - rho) +
235-
abs(mean((a*m + b*e))/mean(e) - 1) +
236-
abs( NNS.dep((a*m + b*e)/(a + b), 1:l)$Correlation - NNS.dep(e, 1:l)$Correlation)
237-
),
238-
abs(NNS.dep((a*m + b*e)/(a + b), e)$Correlation - rho) +
239-
abs(mean((a*m + b*e))/mean(e) - 1)
240-
)
241-
}
224+
error <- abs(NNS.dep(combined, e)$Correlation - rho)
242225
}
243226

227+
return(error)
244228
}
245229

246-
230+
247231
res <- optim(c(.01,.01), func, control=list(abstol = .01))
248232

249233
ensemble <- (res$par[1]*matrix2 + res$par[2]*ensemble) / (sum(abs(res$par)))
234+
235+
236+
# Drift
237+
orig_coef <- fast_lm(1:n, x)$coef
238+
orig_intercept <- orig_coef[1]
239+
orig_drift <- orig_coef[2]
240+
241+
new_coef <- apply(ensemble, 2, function(i) fast_lm(1:n, i)$coef)
242+
slopes <- new_coef[2,]
243+
244+
if(drift){
245+
if(is.null(target_drift)) new_slopes <- (orig_drift - slopes) else new_slopes <- (target_drift - slopes)
246+
ensemble <- ensemble + t(t(sapply(new_slopes, function(slope) cumsum(rep(slope, n)))))
247+
248+
new_intercepts <- orig_intercept - new_coef[1,]
249+
ensemble <- sweep(ensemble, 2, new_intercepts, FUN = "+")
250+
}
251+
252+
250253

251254
if(identical(ordxx_2, ordxx)){
252255
if(reps>1) ensemble <- t(apply(ensemble, 1, function(x) sample(x, size = reps, replace = TRUE)))
@@ -257,6 +260,8 @@
257260
if(expand.sd) ensemble <- NNS.meboot.expand.sd(x=x, ensemble=ensemble, ...)
258261

259262
if(force.clt && reps > 1) ensemble <- force.clt(x=x, ensemble=ensemble)
263+
264+
260265

261266
# scale adjustment
262267

@@ -279,6 +284,9 @@
279284
# Force min / max values
280285
if(!is.null(trim[[2]])) ensemble <- apply(ensemble, 2, function(z) pmax(trim[[2]], z))
281286
if(!is.null(trim[[3]])) ensemble <- apply(ensemble, 2, function(z) pmin(trim[[3]], z))
287+
288+
289+
282290

283291
if(is.ts(x)){
284292
ensemble <- ts(ensemble, frequency=frequency(x), start=start(x))
@@ -287,7 +295,8 @@
287295
if(reps>1) dimnames(ensemble)[[2]] <- paste("Replicate", 1:reps)
288296
}
289297

290-
298+
299+
291300
final <- list(x=x, replicates=round(ensemble, digits = digits), ensemble=Rfast::rowmeans(ensemble), xx=xx, z=z, dv=dv, dvtrim=dvtrim, xmin=xmin,
292301
xmax=xmax, desintxb=desintxb, ordxx=ordxx, kappa = kappa)
293302

R/Normalization.R

+1-1
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
#' @examples
1515
#' \dontrun{
1616
#' set.seed(123)
17-
#' x <- rnorm(100) ; y<-rnorm(100)
17+
#' x <- rnorm(100) ; y <- rnorm(100)
1818
#' A <- cbind(x, y)
1919
#' NNS.norm(A)
2020
#'

R/RcppExports.R

+11-22
Original file line numberDiff line numberDiff line change
@@ -18,8 +18,7 @@ fast_lm_mult <- function(x, y) {
1818
#' @param variable a numeric vector. \link{data.frame} or \link{list} type objects are not permissible.
1919
#' @return LPM of variable
2020
#' @author Fred Viole, OVVO Financial Systems
21-
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
22-
#' \url{https://www.amazon.com/dp/1490523995/ref=cm_sw_su_dp}
21+
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments" (ISBN: 1490523995)
2322
#' @examples
2423
#' set.seed(123)
2524
#' x <- rnorm(100)
@@ -37,8 +36,7 @@ LPM <- function(degree, target, variable) {
3736
#' @param variable a numeric vector. \link{data.frame} or \link{list} type objects are not permissible.
3837
#' @return UPM of variable
3938
#' @author Fred Viole, OVVO Financial Systems
40-
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
41-
#' \url{https://www.amazon.com/dp/1490523995/ref=cm_sw_su_dp}
39+
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments" (ISBN: 1490523995)
4240
#' @examples
4341
#' set.seed(123)
4442
#' x <- rnorm(100)
@@ -56,10 +54,8 @@ UPM <- function(degree, target, variable) {
5654
#' @param variable a numeric vector.
5755
#' @return Standardized LPM of variable
5856
#' @author Fred Viole, OVVO Financial Systems
59-
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
60-
#' \url{https://www.amazon.com/dp/1490523995/ref=cm_sw_su_dp}
61-
#' @references Viole, F. (2017) "Continuous CDFs and ANOVA with NNS"
62-
#' \url{https://www.ssrn.com/abstract=3007373}
57+
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments" (ISBN: 1490523995)
58+
#' @references Viole, F. (2017) "Continuous CDFs and ANOVA with NNS" \doi{10.2139/ssrn.3007373}
6359
#' @examples
6460
#' set.seed(123)
6561
#' x <- rnorm(100)
@@ -92,8 +88,7 @@ LPM.ratio <- function(degree, target, variable) {
9288
#' @param variable a numeric vector.
9389
#' @return Standardized UPM of variable
9490
#' @author Fred Viole, OVVO Financial Systems
95-
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
96-
#' \url{https://www.amazon.com/dp/1490523995/ref=cm_sw_su_dp}
91+
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments" (ISBN: 1490523995)
9792
#' @examples
9893
#' set.seed(123)
9994
#' x <- rnorm(100)
@@ -121,8 +116,7 @@ UPM.ratio <- function(degree, target, variable) {
121116
#' @param target_y numeric; Target for lower deviations of variable Y. Typically the mean of Variable Y for classical statistics equivalences, but does not have to be.
122117
#' @return Co-LPM of two variables
123118
#' @author Fred Viole, OVVO Financial Systems
124-
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
125-
#' \url{https://www.amazon.com/dp/1490523995/ref=cm_sw_su_dp}
119+
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments" (ISBN: 1490523995)
126120
#' @examples
127121
#' set.seed(123)
128122
#' x <- rnorm(100) ; y <- rnorm(100)
@@ -143,8 +137,7 @@ Co.LPM <- function(degree_lpm, x, y, target_x, target_y) {
143137
#' @param target_y numeric; Target for upside deviations of variable Y. Typically the mean of Variable Y for classical statistics equivalences, but does not have to be.
144138
#' @return Co-UPM of two variables
145139
#' @author Fred Viole, OVVO Financial Systems
146-
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
147-
#' \url{https://www.amazon.com/dp/1490523995/ref=cm_sw_su_dp}
140+
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments" (ISBN: 1490523995)
148141
#' @examples
149142
#' set.seed(123)
150143
#' x <- rnorm(100) ; y <- rnorm(100)
@@ -166,8 +159,7 @@ Co.UPM <- function(degree_upm, x, y, target_x, target_y) {
166159
#' @param target_y numeric; Target for lower deviations of variable Y. Typically the mean of Variable Y for classical statistics equivalences, but does not have to be.
167160
#' @return Divergent LPM of two variables
168161
#' @author Fred Viole, OVVO Financial Systems
169-
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
170-
#' \url{https://www.amazon.com/dp/1490523995/ref=cm_sw_su_dp}
162+
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments" (ISBN: 1490523995)
171163
#' @examples
172164
#' set.seed(123)
173165
#' x <- rnorm(100) ; y <- rnorm(100)
@@ -189,8 +181,7 @@ D.LPM <- function(degree_lpm, degree_upm, x, y, target_x, target_y) {
189181
#' @param target_y numeric; Target for upper deviations of variable Y. Typically the mean of Variable Y for classical statistics equivalences, but does not have to be.
190182
#' @return Divergent UPM of two variables
191183
#' @author Fred Viole, OVVO Financial Systems
192-
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
193-
#' \url{https://www.amazon.com/dp/1490523995/ref=cm_sw_su_dp}
184+
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments" (ISBN: 1490523995)
194185
#' @examples
195186
#' set.seed(123)
196187
#' x <- rnorm(100) ; y <- rnorm(100)
@@ -212,10 +203,8 @@ D.UPM <- function(degree_lpm, degree_upm, x, y, target_x, target_y) {
212203
#' @return Matrix of partial moment quadrant values (CUPM, DUPM, DLPM, CLPM), and overall covariance matrix. Uncalled quadrants will return a matrix of zeros.
213204
#' @note For divergent asymmetical \code{"D.LPM" and "D.UPM"} matrices, matrix is \code{D.LPM(column,row,...)}.
214205
#' @author Fred Viole, OVVO Financial Systems
215-
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"
216-
#' \url{https://www.amazon.com/dp/1490523995/ref=cm_sw_su_dp}
217-
#' @references Viole, F. (2017) "Bayes' Theorem From Partial Moments"
218-
#' \url{https://www.ssrn.com/abstract=3457377}
206+
#' @references Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments" (ISBN: 1490523995)
207+
#' @references Viole, F. (2017) "Bayes' Theorem From Partial Moments" \doi{10.2139/ssrn.3457377}
219208
#' @examples
220209
#' set.seed(123)
221210
#' x <- rnorm(100) ; y <- rnorm(100) ; z <- rnorm(100)

README.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33

44

55

6-
[![packageversion](https://img.shields.io/badge/NNS%20version-10.9.3-blue.svg?style=flat-square)](https://github.com/OVVO-Financial/NNS/commits/NNS-Beta-Version) [![Licence](https://img.shields.io/badge/licence-GPL--3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0.en.html)
6+
[![packageversion](https://img.shields.io/badge/NNS%20version-10.9.4-blue.svg?style=flat-square)](https://github.com/OVVO-Financial/NNS/commits/NNS-Beta-Version) [![Licence](https://img.shields.io/badge/licence-GPL--3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0.en.html)
77

88
<h2 style="margin: 0; padding: 0; border: none; height: 40px;"></h2>
99

@@ -59,7 +59,7 @@ Please see https://github.com/OVVO-Financial/NNS/blob/NNS-Beta-Version/examples/
5959
title = {NNS: Nonlinear Nonparametric Statistics},
6060
author = {Fred Viole},
6161
year = {2016},
62-
note = {R package version 10.9.3},
62+
note = {R package version 10.9.4},
6363
url = {https://CRAN.R-project.org/package=NNS},
6464
}
6565
```

doc/NNSvignette_Sampling.R

+15-15
Original file line numberDiff line numberDiff line change
@@ -149,7 +149,7 @@ legend('left', legend = c('ecdf', 'LPM.ratio'), fill=c('black','red'), border=NA
149149
# sapply(boots, function(r) cor(r, x, method = "spearman"))
150150
#
151151
# rho = 1 rho = 0.5 rho = -0.5 rho = -1
152-
# 1.0000000 0.4988059 -0.4995740 -0.9982358
152+
# 1.0000000 0.4989619 -0.4984818 -0.9779778
153153

154154
## ----multisim, eval=FALSE-----------------------------------------------------
155155
# set.seed(123)
@@ -171,8 +171,8 @@ legend('left', legend = c('ecdf', 'LPM.ratio'), fill=c('black','red'), border=NA
171171
# NNS.copula(original.data)
172172
# NNS.copula(new.dep.data)
173173
#
174-
# [1] 0.4379469
175-
# [1] 0.4390599
174+
# [1] 0.4353849
175+
# [1] 0.4357026
176176

177177
## ----eval=FALSE---------------------------------------------------------------
178178
# head(original.data)
@@ -206,17 +206,17 @@ legend('left', legend = c('ecdf', 'LPM.ratio'), fill=c('black','red'), border=NA
206206
## ----eval=FALSE---------------------------------------------------------------
207207
# for(i in 1:4) print(cor(new.boot.dep.matrix[,i], original.data[,i], method = "spearman"))
208208
#
209-
# [1] 0.9453275
210-
# [1] 0.9523726
211-
# [1] 0.9498499
212-
# [1] 0.9524516
209+
# [1] 0.9432899
210+
# [1] 0.9460947
211+
# [1] 0.9442031
212+
# [1] 0.9423242
213213

214214
## ----eval=FALSE---------------------------------------------------------------
215215
# NNS.copula(original.data)
216216
# NNS.copula(new.boot.dep.matrix)
217217
#
218-
# [1] 0.4379469
219-
# [1] 0.4302545
218+
# [1] 0.4353849
219+
# [1] 0.4263725
220220

221221
## ----eval=FALSE---------------------------------------------------------------
222222
# head(original.data)
@@ -230,12 +230,12 @@ legend('left', legend = c('ecdf', 'LPM.ratio'), fill=c('black','red'), border=NA
230230
# [5,] 0.12928774 -2.54934277 0.1741359 0.12928774
231231
# [6,] 1.71506499 1.04057346 -0.6152683 1.71506499
232232
# x y z x
233-
# ensemble1 -0.4667731 -0.8418413 -0.6139059 -0.4708890
234-
# ensemble2 -0.2333747 -1.0908710 0.3748315 -0.2711240
235-
# ensemble3 1.4799734 0.2893831 -0.3851513 1.3645317
236-
# ensemble4 0.1751654 0.2995113 1.1342461 0.1486429
237-
# ensemble5 0.4128802 -2.9789634 -0.1141124 0.3846150
238-
# ensemble6 1.5592660 1.1800553 -0.5285532 1.5041917
233+
# ensemble1 -0.4268047 -0.7794553 -0.6364458 -0.4642642
234+
# ensemble2 -0.2965744 -1.0682197 0.3297265 -0.2531178
235+
# ensemble3 1.3302149 0.3054734 -0.4014515 1.4914884
236+
# ensemble4 0.2257378 0.3108846 1.0603892 0.1728540
237+
# ensemble5 0.4716743 -3.3344967 -0.1917697 0.4309379
238+
# ensemble6 1.3984978 1.1881374 -0.5295386 1.5326055
239239

240240
## ----threads, echo = FALSE----------------------------------------------------
241241
Sys.setenv("OMP_THREAD_LIMIT" = "")

0 commit comments

Comments
 (0)