Skip to content

Commit 99e6bda

Browse files
committed
update
1 parent e67d518 commit 99e6bda

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

Euler/Euler-theory.tex

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -918,7 +918,7 @@ \subsection{Complete Solution}
918918
where $*$ represents either $L_*$ or $R_*$ regions, and $\mathrm{fan}$ represents
919919
solutions in the rarefaction fan itself.
920920

921-
To start, use the Riemann invariant that we obtained by assuming $\gamma$ law eos to relate
921+
To start, use the Riemann invariant that we obtained by assuming $\gamma$-law EOS to relate
922922
the L or R region to $L_*$ or $R_*$ region:
923923
\begin{equation}
924924
u_{L,R} \pm \frac{2c_{L,R}}{\gamma - 1} = u_{*,\mathrm{fan}} \pm \frac{2c_{*,\mathrm{fan}}}{\gamma - 1}
@@ -936,9 +936,9 @@ \subsection{Complete Solution}
936936

937937
Now using the definition of sound speed:
938938
\begin{equation}
939-
c{*,\mathrm{fan}} = \sqrt{\frac{\gamma p}{\rho}} = \pm (u_{*,\mathrm{fan}} - \frac{x}{t})
939+
c_{*,\mathrm{fan}} = \sqrt{\frac{\gamma p_{*,\mathrm{fan}}}{\rho_{*,\mathrm{fan}}}} = \pm (u_{*,\mathrm{fan}} - \frac{x}{t})
940940
\end{equation}
941-
along with $\gamma$ law eos and isentropic condition:
941+
along with $\gamma$-law EOS and isentropic condition:
942942
\begin{equation}
943943
\rho_{*,\mathrm{fan}} = \rho_{L,R}\left( \frac{p_{*,\mathrm{fan}}}{p_{L,R}} \right)^{\frac{1}{\gamma}}
944944
\end{equation}
@@ -954,7 +954,7 @@ \subsection{Complete Solution}
954954
\begin{equation}
955955
p_{*,\mathrm{fan}} = p_{L,R} \left[\frac{2}{\gamma + 1} \pm \frac{\gamma - 1}{(\gamma + 1) c_{L,R}} \left(u_{L,R} - \frac{x}{t}\right)\right]^{\frac{2 \gamma}{\gamma - 1}}
956956
\end{equation}
957-
And we can relate pressure to density via the $\gamma$ law eos as:
957+
And we can relate pressure to density via the $\gamma$-law EOS as:
958958
\begin{equation}
959959
\frac{\rho_{*,\mathrm{fan}}}{\rho_{L,R}} = \left(\frac{p_{*,\mathrm{fan}}}{p_{L,R}}\right)^{\frac{1}{\gamma}}
960960
\end{equation}
@@ -963,8 +963,8 @@ \subsection{Complete Solution}
963963
\rho_{*,\mathrm{fan}} = \rho_{L,R} \left[\frac{2}{\gamma + 1} \pm \frac{\gamma - 1}{(\gamma + 1) c_{L,R}} \left(u_{L,R} - \frac{x}{t}\right)\right]^{\frac{2}{\gamma - 1}}
964964
\end{equation}
965965

966-
Note that we will set $\frac{x}{t} = 0$ since we're determining the condition at the interface, i.e. $x=0$.
967-
966+
Note that when we're solving the Riemann problem at the interface,
967+
$\frac{x}{t} = 0$ since by definition $x=0$.
968968

969969
% figure from figures/Euler/rarefaction_cartoon.py
970970
\begin{figure}

0 commit comments

Comments
 (0)