@@ -918,7 +918,7 @@ \subsection{Complete Solution}
918918where $ *$ represents either $ L_*$ or $ R_*$ regions, and $ \mathrm {fan}$ represents
919919solutions in the rarefaction fan itself.
920920
921- To start, use the Riemann invariant that we obtained by assuming $ \gamma $ law eos to relate
921+ To start, use the Riemann invariant that we obtained by assuming $ \gamma $ - law EOS to relate
922922the L or R region to $ L_*$ or $ R_*$ region:
923923\begin {equation }
924924u_{L,R} \pm \frac {2c_{L,R}}{\gamma - 1} = u_{*,\mathrm {fan}} \pm \frac {2c_{*,\mathrm {fan}}}{\gamma - 1}
@@ -936,9 +936,9 @@ \subsection{Complete Solution}
936936
937937Now using the definition of sound speed:
938938\begin {equation }
939- c {*,\mathrm {fan}} = \sqrt {\frac {\gamma p}{ \rho }} = \pm (u_{*,\mathrm {fan}} - \frac {x}{t})
939+ c_ {*,\mathrm {fan}} = \sqrt {\frac {\gamma p_{*, \mathrm {fan}}}{ \rho _{*, \mathrm {fan}} }} = \pm (u_{*,\mathrm {fan}} - \frac {x}{t})
940940\end {equation }
941- along with $ \gamma $ law eos and isentropic condition:
941+ along with $ \gamma $ - law EOS and isentropic condition:
942942\begin {equation }
943943\rho _{*,\mathrm {fan}} = \rho _{L,R}\left ( \frac {p_{*,\mathrm {fan}}}{p_{L,R}} \right )^{\frac {1}{\gamma }}
944944\end {equation }
@@ -954,7 +954,7 @@ \subsection{Complete Solution}
954954\begin {equation }
955955p_{*,\mathrm {fan}} = p_{L,R} \left [\frac {2}{\gamma + 1} \pm \frac {\gamma - 1}{(\gamma + 1) c_{L,R}} \left (u_{L,R} - \frac {x}{t}\right )\right ]^{\frac {2 \gamma }{\gamma - 1}}
956956\end {equation }
957- And we can relate pressure to density via the $ \gamma $ law eos as:
957+ And we can relate pressure to density via the $ \gamma $ - law EOS as:
958958\begin {equation }
959959\frac {\rho _{*,\mathrm {fan}}}{\rho _{L,R}} = \left (\frac {p_{*,\mathrm {fan}}}{p_{L,R}}\right )^{\frac {1}{\gamma }}
960960\end {equation }
@@ -963,8 +963,8 @@ \subsection{Complete Solution}
963963\rho _{*,\mathrm {fan}} = \rho _{L,R} \left [\frac {2}{\gamma + 1} \pm \frac {\gamma - 1}{(\gamma + 1) c_{L,R}} \left (u_{L,R} - \frac {x}{t}\right )\right ]^{\frac {2}{\gamma - 1}}
964964\end {equation }
965965
966- Note that we will set $ \frac {x}{t} = 0 $ since we're determining the condition at the interface, i.e. $ x= 0 $ .
967-
966+ Note that when we're solving the Riemann problem at the interface,
967+ $ \frac {x}{t} = 0 $ since by definition $ x= 0 $ .
968968
969969% figure from figures/Euler/rarefaction_cartoon.py
970970\begin {figure }
0 commit comments