Some experiences to create octo evaluation env:
conda env remove -n octo
conda create -n octo python=3.10
conda activate octo
pip install -e .
pip install "jax[cuda12_pip]==0.4.20" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html flax==0.7.5
pip install tensorflow==2.15.0 pip install dlimp@git+https://github.com/kvablack/dlimp@5edaa4691567873d495633f2708982b42edf1972
pip install distrax==0.1.5
pip install tensorflow_probability==0.23.0
pip install scipy==1.12.0
pip install einops==0.6.1
pip install transformers==4.34.1
pip install ml_collections==0.1.0
pip install wandb==0.12.14
pip install matplotlib
pip install gym==0.26
pip install plotly==5.16.1
pip install orbax-checkpoint==0.4.0
Note: Line 5 "cuda12_pip" may be replaced by other proper version according to your machine. Refer to jax installation.
Make sure jax version=0.4.20 and flax version=0.7.5
pip show jax flax jaxlib
Run this to verify installation successful
python -c "from octo.model.octo_model import OctoModel; model = OctoModel.load_pretrained('hf://rail-berkeley/octo-base-1.5'); print('Model loaded successfully')"
To use the headless mode of MUJOCO, set the environment variable MUJOCO_GL=egl
.
Please also make sure some neccessary libraries are successfully installed:
sudo apt-get install mesa-utils
sudo apt-get install libglu1-mesa
sudo apt-get install libgl1-mesa-dri
sudo apt-get install libgl1-mesa-glx