-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathworld3_scenarios_sweeps_uniparam.py
481 lines (460 loc) · 30.9 KB
/
world3_scenarios_sweeps_uniparam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import os
import sys
import logging #en reemplazo de los prints
logger = logging.getLogger("--World3 scenarios Uniparameter sweep --") #un logger especifico para este modulo
# Mine:
import mos_writer.mos_script_factory
import sweeping.run_and_plot_model as run_and_plot_model
import filesystem.files_aux as files_aux
import settings.settings_world3_sweep as world3_settings
import world3_specific.standard_run_params_defaults
import world3_specific.params_perturber
#Aux for GLOBALS:
## Skeletons of sweep_value_formula_str. Free variable: i (goes from 0 to (iterations-1) ):
_increasing_by_increment_from_initial_skeleton = "{initial} + i*{increment}"
_increasing_by_percentage_from_initial_skeleton = "{initial}*({percentage}/100*i+1)"
def deltaBeforeAndAfter(p,iterations,delta): #Have to create a function for "delta_before_and_after" because I have to convert to int in python and not in the Modelica Scripting Language
iterations_div_2_int = int(iterations/2)
return "{p}*(1-{iterations_div_2_int}*{delta}) + {p}*({delta}*i)".format(p=p,iterations_div_2_int=iterations_div_2_int,delta=delta)
## Examples:
# sweep_value_formula_str = _increasing_by_increment_from_initial_skeleton.format(initial=2012,increment=10) # "2012 + i*10" --> 2012,2022,2032...
# sweep_value_formula_str = _increasing_by_percentage_from_initial_skeleton.format(initial=1e12,percentage=20) # "1e12*((20/100)*i+1)" --> 1e12, 1.2e12, 1.4e12 ...
# sweep_value_formula_str = deltaBeforeAndAfter(p=10,delta=0.01,iterations=7) # '10*(1-3*0.01) + 10*(0.01*i)' --> 9.7, 9.8, 9.9, 10, 10.1, 10.2, 10.3
# Special sweeps constants definitions: DON'T CHANGE ANYTHING
SPECIAL_policy_years = None # Special vars sweeping that sweeps the year to apply the different policies respective of each scenario. (each scenario has it's policies to apply.)
# System Dynamics .mo to use:
vanilla_SysDyn_mo_path = world3_settings._sys_dyn_package_vanilla_path.replace("\\","/") # The System Dynamics package without modifications
piecewiseMod_SysDyn_mo_path = world3_settings._sys_dyn_package_pw_fix_path.replace("\\","/") # Piecewise function modified to accept queries for values outside of range. Interpolate linearly using closest 2 values
populationTankNewVar_SysDyn_mo_path = world3_settings._sys_dyn_package_pop_state_var_new.replace("\\","/") # Added a new "population" var that includes an integrator. Numerically it's the same as "population" but with the advantage that now we can calculate sensitivities for it
Run2vermeulenAndJongh_SysDyn_mo_path = world3_settings._sys_dyn_package_v_and_j_run_2.replace("\\","/") # Added a new "population" var that includes an integrator. Numerically it's the same as "population" but with the advantage that now we can calculate sensitivities for it
Run3vermeulenAndJongh_SysDyn_mo_path = world3_settings._sys_dyn_package_v_and_j_run_3.replace("\\","/") # Added a new "population" var that includes an integrator. Numerically it's the same as "population" but with the advantage that now we can calculate sensitivities for it
pseudoffwparam_SysDyn_mo_path = world3_settings._sys_dyn_package_pseudo_ffw_param_path.replace("\\","/") # Added a new "population" var that includes an integrator. Numerically it's the same as "population" but with the advantage that now we can calculate sensitivities for it
def main():
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
#### WORK PACKAGE 1 ####
# testPolicyYears()
# testDeltaNRResources()
# testFertility2()
standardRun(vanilla_SysDyn_mo_path)
standardRun(piecewiseMod_SysDyn_mo_path)
standardRun(populationTankNewVar_SysDyn_mo_path)
# The vermeulen tests need a modified SystemDynamics .mo!
# testVermeulenAndJonghRun2() #Run1 is Meadows' std run
# testVermeulenAndJonghRun3()
# From IDA sens analysis:
# testDeltaIncomeExpectAvgTime()
# testDeltaHlthServImpactDel()
# testDeltaFrCapAlObtRes2Bracket5Bracket()
# Tests for 1901 sens
# testDeltaIndMtlEmissFact()
# testDeltaAvgLifeIndCap1()
# testDeltaMtlToxicIndex()
# MULTI TEST: Multiple tests in one.
# testMultiTest1901Top20ParamVar()
# Dynamics to Growth tests:
# testDeltaICOR()
# testDeltaPseudoFFWParam()
#### Temp ####
# testHugoScolnikRuns()
#### WORK PACKAGE 2 ####
# None. The "sweeps" for empirical sensitivity analysis needed to be different, so we included them in "w3_sens_calculator.py"
## Predefined tests
def testDeltaPseudoFFWParam():
# Added a parameter called "pseudo_ffw_param" to Scenario_1, Population_Dynamics and
# BIrths_factors. It's used in Births_factors to calculate the birth rate using the formula of
# World3-v01 instead of World3-v03 (equivalent to W3-Mod)
iterations = 10;
kwargs = {
"plot_vars":["population"],
"startTime": 1900 ,# year to start the simulation (1900 example)
"stopTime": 2500 ,# year to end the simulation (2100 for example)
"scens_to_run" : [1], #The standard run corresponds to the first scenario
"iterations" : iterations,
"sweep_vars": ["pseudo_ffw_param"], # Examples: SPECIAL_policy_years, ["nr_resources_init"]
"sweep_value_formula_str" : deltaBeforeAndAfter(p=0.22,delta=0.02,iterations=iterations), # Sweep floor(iterations/2) times before and after p changing by a percentage of delta*100
"fixed_params" : [], # No fixed parameter changes. Example: [("nr_resources_init",6.3e9),("des_compl_fam_size_norm",2),...]
"mo_file" : pseudoffwparam_SysDyn_mo_path, # mo that has pseudo_ffw_param as param
"plot_std_run": True, #Choose to plot std run alognside this test results
}
setUpSweepsAndRun(**kwargs)
def testDeltaICOR():
## According to Dynamics To Growth:
# Run 3-3 (Figure 3-39) DECREASED ICOR BY 33%: ICOR1=2
# Run 3-4 (Figure 3-40) INCREASED ICOR BY 33%: ICOR1=4
# ICOR is also modified in Vermeulen but not at the start (in Verm is modified in 1975)
# and this is a sweep of only this var
# ICOR is "p_ind_cap_out_ratio_1", Default: ICOR=3
# Plots:
# "industrial output" --> output Real industrial_output(unit = "dollar/yr") "Total annual world industrial output";
# "service output per capita" --> output Real serv_out_pc(unit = "dollar/yr") "Total annual services per person";
# "capital utilization fraction" --> Industrial_Investment1.Industrial_Output.capital_util_fr (there's no var at the top)
# "industrial output per capita" --> output Real ind_out_pc(unit = "dollar/yr") "Total annual consumer goods per person";
# "fraction of industrial output allocated to services" --> output Real s_fioa_serv "Fraction of industrial output allocated to service sector";
iterations = 9;
kwargs = {
"plot_vars":["Industrial_Investment1Industrial_Outputcapital_util_fr"],
# "plot_vars":["Industrial_Investment1Industrial_Outputcapital_util_fr", "industrial_output", "serv_out_pc", "ind_out_pc", "s_fioa_serv",],
"startTime": 1900 ,# year to start the simulation (1900 example)
"stopTime": 2000 ,# year to end the simulation (2100 for example)
"scens_to_run" : [1], #The standard run corresponds to the first scenario
"iterations" : iterations,
"sweep_vars": ["p_ind_cap_out_ratio_1"], # Examples: SPECIAL_policy_years, ["nr_resources_init"]
"sweep_value_formula_str" : deltaBeforeAndAfter(p=3,delta=1/12,iterations=iterations), # Sweep floor(iterations/2) times before and after p changing by a percentage of delta*100
"fixed_params" : [], # No fixed parameter changes. Example: [("nr_resources_init",6.3e9),("des_compl_fam_size_norm",2),...]
# "mo_file" : vanilla_SysDyn_mo_path, # Mo without modifications
"mo_file" : piecewiseMod_SysDyn_mo_path, # mo that interpolates outwards with values that lie outside of range
"plot_std_run": False, #Choose to plot std run alognside this test results
}
setUpSweepsAndRun(**kwargs)
def testMultiTest1901Top20ParamVar():
# The plot vars remain the same for each sub-test
# Only one parameter per sub-test (iterating one by one "parameters to sweep" list)
# SLOWWWWWWW!. Compiles model again for each new param. It was made quickly.
param_list= \
[("p_fr_cap_al_obt_res_2[4]" ,0.05 ),
("p_avg_life_ind_cap_1" ,14 ),
("ind_mtl_toxic_index" ,10 ),
("p_fr_cap_al_obt_res_2[3]" ,0.1 ),
("p_avg_life_agr_inp_2" ,2 ),
("ind_mtl_emiss_fact" ,0.1 ),
("agr_mtl_toxic_index" ,1 ),
("assim_half_life_1970" ,1.5 ),
("life_expect_norm" ,28 ),]
# Common "test arguments":
kwargs = {
"plot_vars":["Food_Production1Agr_InpIntegrator1y","Arable_Land_Dynamics1Pot_Arable_LandIntegrator1y","Arable_Land_Dynamics1Arable_LandIntegrator1y","population","nr_resources"],
"startTime": 1900 ,# year to start the simulation (1900 example)
"stopTime": 2100 ,# year to end the simulation (2100 for example)
"scens_to_run" : [1], #The standard run corresponds to the first scenario
"iterations" : 5,
"fixed_params" : [], # No fixed parameter changes. Example: [("nr_resources_init",6.3e9),("des_compl_fam_size_norm",2),...]
# "mo_file" : vanilla_SysDyn_mo_path, # Mo without modifications
"mo_file" : piecewiseMod_SysDyn_mo_path, # mo that interpolates outwards with values that lie outside of range
"plot_std_run": False, #Choose to plot std run alognside this test results
}
# Iterate params and run Scenario 1 with ^ settings for each one
for param,default in param_list:
kwargs["sweep_vars"] = [param]
kwargs["sweep_value_formula_str"] = deltaBeforeAndAfter(p=default,delta=0.1,iterations=kwargs["iterations"]) # Sweep floor(iterations/2) times before and after p changing by a percentage of delta*100
setUpSweepsAndRun(**kwargs)
def testVermeulenAndJonghRun2():
### Changes must be made in the code and not in initial parameters
#Changes for 1975 in the code: (AND NOT IN YEAR 1900)
# ("p_ind_cap_out_ratio_1",3.3), #V&J-2: ICOR= 3.3, Default: ICOR=3
# ("p_fioa_cons_const_1",0.473), #V&J-2: FIOAC= 0.473, Default: FIOAC=0.43
# ("p_avg_life_ind_cap_1", 12.6), #V&J-2: ALIC= 12.6, Default: ALIC=14
kwargs = {
"plot_vars":[#"pseudo" parameters:
"Industrial_Investment1Industrial_Outputs_ind_cap_out_ratio", "Industrial_Investment1S_FIOA_Conss_fioa_cons_const","Industrial_Investment1S_Avg_Life_Ind_Caps_avg_life_ind_cap",
"population","ppoll_index","industrial_output","nr_resources"],#,"nr_resources","Population_Dynamics1FFW"] #without the "." in "...Dynamics.FFW" because numpy doesn't play well with dots in column names
"startTime": 1900 ,# year to start the simulation (1900 example)
"stopTime": 2100 ,# year to end the simulation (2100 for example)
"scens_to_run" : [1] ,#List of ints representing the scenarios to run (from 1 to 11). Example: [1,2,3,4,5,6,7,8,9]
"iterations" : 1 ,#No sweeping: more than one iteration is irrelevant
"sweep_vars": [] ,#No sweeping done in VermeulenAndJonghRun
"sweep_value_formula_str" : "i" ,#irrelevant formula (no sweeping)
"fixed_params" : [ ], #No changes in params (for year 1900)
"mo_file" : Run2vermeulenAndJongh_SysDyn_mo_path,
"plot_std_run": True, #Choose to plot std run alognside this test results
}
setUpSweepsAndRun(**kwargs)
def testVermeulenAndJonghRun3():
### Changes must be made in the code and not in initial parameters
#Changes for 1975 in the code: (AND NOT IN YEAR 1900)
# ("p_ind_cap_out_ratio_1",2.7), #V&J-3: ICOR= 2.7, Default: ICOR=3
# ("p_fioa_cons_const_1",0.387), #V&J-3: FIOAC= 0.387, Default: FIOAC=0.43
# ("p_avg_life_ind_cap_1", 15.4), #V&J-3: ALIC= 15.4, Default: ALIC=14
kwargs = {
"plot_vars":[#"pseudo" parameters:
"Industrial_Investment1Industrial_Outputs_ind_cap_out_ratio", "Industrial_Investment1S_FIOA_Conss_fioa_cons_const","Industrial_Investment1S_Avg_Life_Ind_Caps_avg_life_ind_cap",
"population","ppoll_index","industrial_output","nr_resources"],#,"nr_resources","Population_Dynamics1FFW"] #without the "." in "...Dynamics.FFW" because numpy doesn't play well with dots in column names
"startTime": 1900 ,# year to start the simulation (1900 example)
"stopTime": 2100 ,# year to end the simulation (2100 for example)
"scens_to_run" : [1] ,#List of ints representing the scenarios to run (from 1 to 11). Example: [1,2,3,4,5,6,7,8,9]
"iterations" : 1 ,#No sweeping: more than one iteration is irrelevant
"sweep_vars": [] ,#No sweeping done in VermeulenAndJonghRun
"sweep_value_formula_str" : "i" ,#irrelevant formula (no sweeping)
"fixed_params" : [ ], #No changes in params (for year 1900)
"mo_file" : Run3vermeulenAndJongh_SysDyn_mo_path,
"plot_std_run": True, #Choose to plot std run alognside this test results
}
setUpSweepsAndRun(**kwargs)
def standardRun(mo_file): #ONLY TO GET THE STANDARD CSV!
kwargs = {
"plot_vars":["population"],
"startTime": 1900 ,# year to start the simulation (1900 example)
"stopTime": 2500 ,# year to end the simulation (2100 for example)
"scens_to_run" : [1], #The standard run corresponds to the first scenario
"iterations" : 1, #More than one iteration is irrelevant
"sweep_vars": [] ,#No sweeping done in std run
"sweep_value_formula_str" : "i" ,#irrelevant formula (no sweeping)
"fixed_params" : [], #We don't want to change any parameters
"mo_file" : mo_file,
"plot_std_run": False, #Choose to plot std run alognside this test results
}
setUpSweepsAndRun(**kwargs)
def testFertility2():
kwargs = {
"plot_vars":[],
"startTime": 1900 ,# year to start the simulation (1900 example)
"stopTime": 2100 ,# year to end the simulation (2100 for example)
"scens_to_run" : [1], #The standard run corresponds to the first scenario
"iterations" : 8, #More than one iteration is irrelevant
"sweep_vars": ["pseudo_ffw"], #NOT ORIGINAL PARAMETER! ADDED ONLY TO SCENARIO 1
"sweep_value_formula_str" : deltaBeforeAndAfter(p=1,delta=0.01,iterations=iterations), #Has to be a string with only free variable "i"
"fixed_params" : [
("p_ind_cap_out_ratio_1",3.15), #Hugo: ICOR= 3.15, Default: ICOR=3
("p_avg_life_ind_cap_1", 13.3), #Hugo: ALIC= 13.3, Default: ALIC=14
("p_avg_life_serv_cap_1", 17.1), #Hugo: ALSC= 17.1, Default: ALSC=20
("p_serv_cap_out_ratio_1", 1.05) #Hugo: SCOR= 1.05, Default: SCOR=1
],
"mo_file" : vanilla_SysDyn_mo_path, # Mo without modifications
"plot_std_run": False, #Choose to plot std run alognside this test results
}
setUpSweepsAndRun(**kwargs)
def testHugoScolnikRuns():
# Hugo Scolnik article: "Crítica metodológica al modelo WORLD 3" (Methodological criticisim to the World3 model)
# Perturbed 5 params by 5%
# ICOR= 3.15, Default: ICOR=3
# ALIC= 13.3, Default: ALIC=14
# ALSC= 17.1, Default: ALSC=20
# SCOR= 1.05, Default: SCOR=1
# Run "Perturbed": FFW= 0.231, Default: FFW=0.22
# Run "Perturbed Increasing FFW": FFW= 0.242, Default: FFW=0.22
# Perturbed rest of the params by a scalar of 0.24172080E-12
# This function:
# Perturbed 4 params by 5%: (not FFW)
# ICOR= 3.15, Default: ICOR=3
# ALIC= 13.3, Default: ALIC=14
# ALSC= 17.1, Default: ALSC=20
# SCOR= 1.05, Default: SCOR=1
# Perturbed rest of the params by a scalar of 0.24172080E-12 (not including FFW)
# We use a modified W3 version that replaces the births function from W3-v03 (corresponding to W3-Modelica) with the "old" births function from W3-v01 that included the parameter ffw. We call it "pseudo_ffw_param".
# Swept pseudo_ffw_param by 10% up and down with a granularity of 2% to include both Runs from paper in same plot
perturbing_scalar = 0.24172080E-12
percentage_to_perturb = perturbing_scalar*100
# Get full list of params
default_params_info_list = world3_specific.standard_run_params_defaults.w3_params_info_list
# set 4 params perturbed values manually
special_params = ["pseudo_ffw_param","p_ind_cap_out_ratio_1", "p_avg_life_ind_cap_1", "p_avg_life_serv_cap_1", "p_serv_cap_out_ratio_1",]
special_params_perturbed_info_list = [
("p_ind_cap_out_ratio_1",3.15), #Hugo: ICOR= 3.15, Default: ICOR=3
("p_avg_life_ind_cap_1", 13.3), #Hugo: ALIC= 13.3, Default: ALIC=14
("p_avg_life_serv_cap_1", 17.1), #Hugo: ALSC= 17.1, Default: ALSC=20
("p_serv_cap_out_ratio_1", 1.05), #Hugo: SCOR= 1.05, Default: SCOR=1
]
# remove 5 params from list
rest_of_params = [x[0] for x in default_params_info_list if x[0] not in special_params]
# set rest of params perturbed values by adding a scalar
rest_of_params_perturbed_info_list = world3_specific.params_perturber.perturbeParameterByPercentage(rest_of_params,percentage_to_perturb)
fixed_params = special_params_perturbed_info_list + rest_of_params_perturbed_info_list
iterations = 11
kwargs = {
"plot_vars":["population"],
"startTime": 1900 ,# year to start the simulation (1900 example)
"stopTime": 2300 ,# year to end the simulation (2100 for example)
"scens_to_run" : [1], #The standard run corresponds to the first scenario
"iterations" : iterations,
"sweep_vars": ["pseudo_ffw_param"], #NOT ORIGINAL PARAMETER! ADDED ONLY TO SCENARIO 1
"sweep_value_formula_str" : deltaBeforeAndAfter(p=0.22,delta=0.02,iterations=iterations),
"fixed_params" : fixed_params,
"mo_file" : pseudoffwparam_SysDyn_mo_path,
"plot_std_run": True, #Choose to plot std run alognside this test results
"fixed_params_str": "By +5%: \np_ind_cap_out_ratio_1, p_avg_life_ind_cap_1, p_avg_life_serv_cap_1, p_serv_cap_out_ratio_1.\nBy increase of small percentage: \nThe rest.",
}
setUpSweepsAndRun(**kwargs)
### BORRAR DESDE ACA HASTA EL FIN DE LA FUNCIÓN
# print(len(default_params_info_list))
# print(len(special_params_perturbed_info_list))
# print(len(rest_of_params_perturbed_info_list))
# print(len(fixed_params))
# print(fixed_params)
def testDeltaIndMtlEmissFact():
iterations = 10;
kwargs = {
"plot_vars":["Food_Production1Agr_InpIntegrator1y","Arable_Land_Dynamics1Pot_Arable_LandIntegrator1y","Arable_Land_Dynamics1Arable_LandIntegrator1y","population","nr_resources"], # Examples: SPECIAL_policy_years, ["nr_resources_init"]
"startTime": 1900 ,# year to start the simulation (1900 example)
"stopTime": 1910 ,# year to end the simulation (2100 for example)
"scens_to_run" : [1], #The standard run corresponds to the first scenario
"iterations" : iterations,
"sweep_vars": ["ind_mtl_emiss_fact"], # Examples: SPECIAL_policy_years, ["nr_resources_init"]
"sweep_value_formula_str" : deltaBeforeAndAfter(p=0.1,delta=0.1,iterations=iterations), # Sweep floor(iterations/2) times before and after p changing by a percentage of delta*100
"fixed_params" : [], # No fixed parameter changes. Example: [("nr_resources_init",6.3e9),("des_compl_fam_size_norm",2),...]
"mo_file" : vanilla_SysDyn_mo_path, # Mo without modifications
"plot_std_run": False, #Choose to plot std run alognside this test results
}
setUpSweepsAndRun(**kwargs)
def testDeltaFrCapAlObtRes2Bracket4Bracket():
iterations = 10;
kwargs = {
"plot_vars":["Food_Production1Agr_InpIntegrator1y","population" "Arable_Land_Dynamics1Arable_LandIntegrator1y", "Arable_Land_Dynamics1Pot_Arable_LandIntegrator1y"],
"startTime": 1900 ,# year to start the simulation (1900 example)
"stopTime": 2100 ,# year to end the simulation (2100 for example)
"scens_to_run" : [1], #The standard run corresponds to the first scenario
"iterations" : iterations,
"sweep_vars": ["p_fr_cap_al_obt_res_2[4]"], # Examples: SPECIAL_policy_years, ["nr_resources_init"]
"sweep_value_formula_str" : deltaBeforeAndAfter(p=0.05,delta=0.1,iterations=iterations), # Sweep floor(iterations/2) times before and after p changing by a percentage of delta*100
"fixed_params" : [], # No fixed parameter changes. Example: [("nr_resources_init",6.3e9),("des_compl_fam_size_norm",2),...]
"mo_file" : vanilla_SysDyn_mo_path, # Mo without modifications
"plot_std_run": False, #Choose to plot std run alognside this test results
}
setUpSweepsAndRun(**kwargs)
def testDeltaFrCapAlObtRes2Bracket5Bracket():
iterations = 10;
kwargs = {
"plot_vars":["Food_Production1Agr_InpIntegrator1y","population"],
"startTime": 1900 ,# year to start the simulation (1900 example)
"stopTime": 2100 ,# year to end the simulation (2100 for example)
"scens_to_run" : [1], #The standard run corresponds to the first scenario
"iterations" : iterations,
"sweep_vars": ["p_fr_cap_al_obt_res_2[5]"], # Examples: SPECIAL_policy_years, ["nr_resources_init"]
"sweep_value_formula_str" : deltaBeforeAndAfter(p=0.05,delta=0.1,iterations=iterations), # Sweep floor(iterations/2) times before and after p changing by a percentage of delta*100
"fixed_params" : [], # No fixed parameter changes. Example: [("nr_resources_init",6.3e9),("des_compl_fam_size_norm",2),...]
"mo_file" : vanilla_SysDyn_mo_path, # Mo without modifications
"plot_std_run": False, #Choose to plot std run alognside this test results
}
setUpSweepsAndRun(**kwargs)
def testDeltaHlthServImpactDel():
iterations = 5;
kwargs = {
"plot_vars":["Food_Production1Agr_InpIntegrator1y","population"],
"startTime": 1900 ,# year to start the simulation (1900 example)
"stopTime": 2100 ,# year to end the simulation (2100 for example)
"scens_to_run" : [1], #The standard run corresponds to the first scenario
"iterations" : iterations,
"sweep_vars": ["hlth_serv_impact_del"], # Examples: SPECIAL_policy_years, ["nr_resources_init"]
"sweep_value_formula_str" : deltaBeforeAndAfter(p=20,delta=0.1,iterations=iterations), # Sweep floor(iterations/2) times before and after p changing by a percentage of delta*100
"fixed_params" : [], # No fixed parameter changes. Example: [("nr_resources_init",6.3e9),("des_compl_fam_size_norm",2),...]
"mo_file" : vanilla_SysDyn_mo_path, # Mo without modifications
"plot_std_run": False, #Choose to plot std run alognside this test results
}
setUpSweepsAndRun(**kwargs)
def testDeltaIncomeExpectAvgTime():
iterations = 10;
kwargs = {
"plot_vars":["Food_Production1Agr_InpIntegrator1y","Population_Dynamics1Pop_0_14y","population"],
"startTime": 1900 ,# year to start the simulation (1900 example)
"stopTime": 2100 ,# year to end the simulation (2100 for example)
"scens_to_run" : [1], #The standard run corresponds to the first scenario
"iterations" : iterations,
"sweep_vars": ["income_expect_avg_time"], # Examples: SPECIAL_policy_years, ["nr_resources_init"]
"sweep_value_formula_str" : deltaBeforeAndAfter(p=3,delta=0.1,iterations=iterations), # Sweep floor(iterations/2) times before and after p changing by a percentage of delta*100
"fixed_params" : [], # No fixed parameter changes. Example: [("nr_resources_init",6.3e9),("des_compl_fam_size_norm",2),...]
"mo_file" : vanilla_SysDyn_mo_path, # Mo without modifications
"plot_std_run": False, #Choose to plot std run alognside this test results
}
setUpSweepsAndRun(**kwargs)
def testDeltaMtlToxicIndex():
iterations = 5;
kwargs = {
"plot_vars":["Food_Production1Agr_InpIntegrator1y","Arable_Land_Dynamics1Pot_Arable_LandIntegrator1y","Arable_Land_Dynamics1.Arable_Land.Integrator1.y","population","nr_resources"],
"startTime": 1900 ,# year to start the simulation (1900 example)
"stopTime": 1910 ,# year to end the simulation (2100 for example)
"scens_to_run" : [1], #The standard run corresponds to the first scenario
"iterations" : iterations,
"sweep_vars": ["ind_mtl_toxic_index"], # Examples: SPECIAL_policy_years, ["nr_resources_init"]
"sweep_value_formula_str" : deltaBeforeAndAfter(p=10,delta=0.1,iterations=iterations), # Sweep floor(iterations/2) times before and after p changing by a percentage of delta*100
"fixed_params" : [], # No fixed parameter changes. Example: [("nr_resources_init",6.3e9),("des_compl_fam_size_norm",2),...]
"mo_file" : vanilla_SysDyn_mo_path, # Mo without modifications
"plot_std_run": False, #Choose to plot std run alognside this test results
}
setUpSweepsAndRun(**kwargs)
def testDeltaAvgLifeIndCap1():
iterations = 5;
kwargs = {
"plot_vars":["Food_Production1Agr_InpIntegrator1y","Arable_Land_Dynamics1Pot_Arable_LandIntegrator1y","Arable_Land_Dynamics1.Arable_Land.Integrator1.y","population","nr_resources"],
"startTime": 1900 ,# year to start the simulation (1900 example)
"stopTime": 1910 ,# year to end the simulation (2100 for example)
"scens_to_run" : [1], #The standard run corresponds to the first scenario
"iterations" : iterations,
"sweep_vars": ["p_avg_life_ind_cap_1"], # Examples: SPECIAL_policy_years, ["nr_resources_init"]
"sweep_value_formula_str" : deltaBeforeAndAfter(p=14,delta=0.1,iterations=iterations), # Sweep floor(iterations/2) times before and after p changing by a percentage of delta*100
"fixed_params" : [], # No fixed parameter changes. Example: [("nr_resources_init",6.3e9),("des_compl_fam_size_norm",2),...]
"mo_file" : vanilla_SysDyn_mo_path, # Mo without modifications
"plot_std_run": False, #Choose to plot std run alognside this test results
}
setUpSweepsAndRun(**kwargs)
def testDeltaNRResources():
kwargs = {
"plot_vars":[],
"startTime": 1900 ,# year to start the simulation (1900 example)
"stopTime": 2100 ,# year to end the simulation (2100 for example)
"scens_to_run" : [1], #The standard run corresponds to the first scenario
"iterations" : 10,
"sweep_vars": ["nr_resources_init"], # Sweep only one var: "nr_resources_init". Examples: SPECIAL_policy_years, ["nr_resources_init"]
"sweep_value_formula_str" : deltaBeforeAndAfter(p=1e12,delta=0.1,iterations=iterations), # Sweep floor(iterations/2) times before and after p changing by a percentage of delta*100
"fixed_params" : [], # No fixed parameter changes. Example: [("nr_resources_init",6.3e9),("des_compl_fam_size_norm",2),...]
"mo_file" : vanilla_SysDyn_mo_path, # Mo without modifications
"plot_std_run": False, #Choose to plot std run alognside this test results
}
setUpSweepsAndRun(**kwargs)
def testPolicyYears():
kwargs = {
"plot_vars":["population","nr_resources"],
"startTime": 1900 ,# year to start the simulation (1900 example)
"stopTime": 2200 ,# year to end the simulation (2100 for example)
"scens_to_run" : [9],
"iterations" : 1,
"sweep_vars": SPECIAL_policy_years, # Set to SPECIAL_policy_years to use scenario specific defaults (year of application of policies). Examples: SPECIAL_policy_years, ["nr_resources_init"]
"sweep_value_formula_str" : _increasing_by_increment_from_initial_skeleton.format(initial=2022,increment=10), # "2012 + i*10" --> 2012,2022,2032...
"fixed_params" : [], # No fixed parameter changes. Example: [("nr_resources_init",6.3e9),("des_compl_fam_size_norm",2),...]
"mo_file" : vanilla_SysDyn_mo_path, # Mo without modifications
"plot_std_run": False, #Choose to plot std run alognside this test results
}
setUpSweepsAndRun(**kwargs)
#World3 specific:
def setUpSweepsAndRun(iterations,sweep_vars,sweep_value_formula_str,fixed_params,plot_vars,startTime,stopTime,scens_to_run,mo_file,plot_std_run=False,fixed_params_str=False):
#The "root" output folder path.
output_path = files_aux.makeOutputPath("modelica_uniparam_sweep")
#Create scenarios from factory
scenarios = []
for i in scens_to_run:
initial_factory_for_scen_i = initialFactoryForWorld3Scenario(scen_num=i,start_time=startTime,stop_time=stopTime,mo_file=mo_file,fixed_params=fixed_params,sweep_vars=sweep_vars)
scenario_tuple =("scenario_"+str(i),initial_factory_for_scen_i)
scenarios.append(scenario_tuple)
doScenariosSet(scenarios, plot_vars=plot_vars,iterations=iterations,output_root_path=output_path, sweep_value_formula_str=sweep_value_formula_str,plot_std_run=plot_std_run,fixed_params_str=fixed_params_str)
def doScenariosSet(scenarios,plot_vars,iterations,output_root_path,sweep_value_formula_str,plot_std_run,fixed_params_str):
for folder_name,initial_scen_factory in scenarios:
logger.info("Running scenario {folder_name}".format(folder_name=folder_name))
os.makedirs(os.path.join(output_root_path,folder_name))
run_and_plot_model.createSweepRunAndPlotForModelInfo(initial_scen_factory,plot_vars=plot_vars,iterations=iterations,output_folder_path=os.path.join(output_root_path,folder_name),sweep_value_formula_str=sweep_value_formula_str,csv_file_name_modelica_skeleton=world3_settings.sweeping_csv_file_name_modelica_skeleton,csv_file_name_python_skeleton=world3_settings.sweeping_csv_file_name_python_skeleton,plot_std_run=plot_std_run,fixed_params_str=fixed_params_str)
def initialFactoryForWorld3Scenario(scen_num,start_time,stop_time,mo_file,sweep_vars=None,fixed_params=[]):
#Get the mos script factory for a scenario number (valid from 1 to 11)
assert 1<=scen_num<=9 , "The scenario number must be between 1 and 9. Your input: {0}".format(scen_num)
if sweep_vars or isinstance(sweep_vars,list): #Have to use isinstance for empty lists
#If given a list of variables to sweep, don't use defaults
final_sweep_vars = sweep_vars
else:
#If NOT given a list of variables to sweep, use the defaults for that scenario
final_sweep_vars = defaultSweepVarsForScenario(scen_num)
model_name = world3_settings._world3_scenario_model_skeleton.format(scen_num=scen_num) #global
initial_factory_dict = {
# "mo_file" : world3_settings._sys_dyn_package_pop_state_var_new.replace("\\","/"), #Global
"mo_file" : mo_file,
"sweep_vars" : final_sweep_vars,
"model_name" : model_name,
"startTime" : start_time,
"stopTime" : stop_time,
"fixed_params": fixed_params,
}
initial_factory = mos_writer.mos_script_factory.UniparamMosScriptFactory(settings_dict=initial_factory_dict)
return initial_factory
def defaultSweepVarsForScenario(scen_num):
default_sweep_vars_dict = defaultSweepVarsDict()
return default_sweep_vars_dict[scen_num]
def defaultSweepVarsDict():
default_sweep_vars_dict ={
9: ["t_fcaor_time", "t_fert_cont_eff_time", "t_zero_pop_grow_time", "t_ind_equil_time", "t_policy_year", "t_land_life_time"],
8: ["t_fcaor_time", "t_fert_cont_eff_time", "t_zero_pop_grow_time", "t_ind_equil_time", "t_policy_year"],
7: ["t_fcaor_time", "t_fert_cont_eff_time", "t_zero_pop_grow_time"],
6: ["t_fcaor_time", "t_policy_year", "t_land_life_time"],
5: ["t_fcaor_time", "t_policy_year", "t_land_life_time"],
4: ["t_fcaor_time", "t_policy_year"],
3: ["t_fcaor_time", "t_policy_year"],
2: ["t_fcaor_time"],
1: []
}
return default_sweep_vars_dict
# FIRST EXECUTABLE CODE:
if __name__ == "__main__":
main()