You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
In general it is difficult to find a closed form equation for the friction force for a pipe with varying area that is completely universal. However, if the change i area is small compared to the pipe length we can approximate the
225
+
In general it is difficult to find a closed form equation for the friction force for a pipe with varying area that is completely universal.
226
+
For a constant diameter pipe the friction force can be estimated using the traditional friction coefficient approach
226
227
%
227
228
\[
228
229
F_{f}= A \cdot\rho\cdot g \cdot h_{f}= A \cdot\rho\cdot g \left[ f \cdot\left(\frac{L}{D}\right) \frac{v^{2}}{2g} \right] =\frac{1}{A} \cdot\rho\cdot g \left[ f \cdot\left(\frac{L}{D}\right) \frac{Q^{2}}{2g} \right]
229
230
\]
230
231
%
232
+
where the he friction factor $f$ is a function of the Reynolds number $Re$ and relative roughness $\epsilon/D$.
233
+
If the change in are is small compared to the pipe length, the friction force can be approximated as a sum of smaller pipes of length $dx \cdot L$, which in the limit of
234
+
$dx \rightarrow0$ becomes an integral.
235
+
236
+
However, if the change i area is small compared to the pipe length we can approximate
237
+
231
238
\[
232
-
F_{f}= A \cdot\rho\cdot g \cdot h_{f}= \int\frac{1}{A(x)} \cdot\rho\cdot g \left[ f \cdot\left(\frac{1}{D(x)}\right) \frac{Q^{2}}{2g} \right] dx
239
+
F_{f}= \int_{0}^{1} \frac{1}{A(x)} \cdot\rho\cdot g \left[ f \cdot\left(\frac{L}{D(x)}\right) \frac{Q^{2}}{2g} \right] dx
233
240
\]
234
-
Assuming a linear diameter distribution from the inlet to the outlet
241
+
Assuming a linear diameter distribution from the inlet to the outlet
242
+
235
243
\[
236
-
D\left(x\right)=D_{1}+\frac{\left(D_{2}-D_{1} \right)}{L}\cdot x
244
+
D\left(x\right)=D_{1}+\left(D_{2}-D_{1} \right)\cdot x= D_{1}\cdot\left(1+\delta\cdot x\right) \;\; x \in [0,1]
237
245
\]
238
-
and
246
+
where
239
247
\[
240
-
A\left(x\right)=\frac{\pi}{4} D^{2}
248
+
\delta=\frac{\left(D_{2}-D_{1} \right)}{D_1}
241
249
\]
242
-
%
250
+
and
243
251
\[
244
-
D\left(x\right)=D_{1}+\frac{\left(D_{2}-D_{1} \right)}{L}\cdot x
252
+
A\left(x\right)=\frac{\pi}{4} D^{2}=A_{1} \cdot\left(1+2\delta x +\delta^{2} x^{2}\right)
245
253
\]
254
+
246
255
%
247
256
\[
248
257
F_{f}= A \cdot\rho\cdot g \cdot h_{f}= \left[\frac{\rho\cdot L \cdot Q^{2}}{2} \right] \int\frac{1}{A(x)\cdot D(x)} dx
249
258
\]
250
259
%
251
260
\[
252
-
F_{f}= A \cdot\rho\cdot g \cdot h_{f}= \left[\frac{2 \rho\cdot L \cdot Q^{2}}{\pi} \right] \int\frac{1}{D^{3}(x)} dx
261
+
F_{f}= f \cdot\left[\frac{2 \rho\cdot L \cdot Q^{2}}{A_{1} D_{1}} \right] \int_{0}^{1}\frac{1}{\left(1+\delta\cdot x \right)^{3}} dx
253
262
\]
254
263
%
255
264
In principle the friction factor $f$ is a function of the Reynolds number $Re$ and relative roughness $\epsilon/D$. Ignoring this, and setting both to the constant value based on the mean value
256
265
257
266
%
267
+
\subsection{Kladd}
268
+
%
269
+
\[
270
+
A\left(x\right)=\frac{\pi}{4} D^{2}=\frac{\pi}{4} D_{1}^{2}\left(1+2\delta x +\delta^{2} x^{2}\right)
271
+
\]
272
+
273
+
\[
274
+
D\left(x\right)=D_{1}+\left(D_{2}-D_{1} \right)\cdot x= D_{1}\cdot\left(1+\frac{\left(D_{2}-D_{1} \right)}{D_1}\cdot x\right) \;\; x \in [0,1]
275
+
\]
276
+
%
277
+
\[
278
+
D\left(x\right)=D_{1}+\frac{\left(D_{2}-D_{1} \right)}{L}\cdot x
279
+
\]
280
+
%
281
+
\[
282
+
F_{f}= A \cdot\rho\cdot g \cdot h_{f}= \left[\frac{\rho\cdot L \cdot Q^{2}}{2} \right] \int\frac{1}{A(x)\cdot D(x)} dx
283
+
\]
284
+
%
285
+
\[
286
+
F_{f}= A \cdot\rho\cdot g \cdot h_{f}= \left[\frac{2 \rho\cdot L \cdot Q^{2}}{\pi} \right] \int\frac{1}{D^{3}(x)} dx
0 commit comments