Skip to content

Commit 24a0409

Browse files
committed
NOT YET READY: continued to develop
1 parent 45c2c9b commit 24a0409

File tree

2 files changed

+44
-12
lines changed

2 files changed

+44
-12
lines changed

OpenHPL/Resources/Documents/Developer_docs/OpenHPL_Pipe.tex

Lines changed: 40 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -222,40 +222,71 @@ \subsection{Further details}
222222
%
223223
\subsection{Friction loss of variable area pipe}
224224
%
225-
In general it is difficult to find a closed form equation for the friction force for a pipe with varying area that is completely universal. However, if the change i area is small compared to the pipe length we can approximate the
225+
In general it is difficult to find a closed form equation for the friction force for a pipe with varying area that is completely universal.
226+
For a constant diameter pipe the friction force can be estimated using the traditional friction coefficient approach
226227
%
227228
\[
228229
F_{f}= A \cdot \rho \cdot g \cdot h_{f}= A \cdot \rho \cdot g \left[ f \cdot \left(\frac{L}{D}\right) \frac{v^{2}}{2g} \right] =\frac{1}{A} \cdot \rho \cdot g \left[ f \cdot \left(\frac{L}{D}\right) \frac{Q^{2}}{2g} \right]
229230
\]
230231
%
232+
where the he friction factor $f$ is a function of the Reynolds number $Re$ and relative roughness $\epsilon/D$.
233+
If the change in are is small compared to the pipe length, the friction force can be approximated as a sum of smaller pipes of length $dx \cdot L$, which in the limit of
234+
$dx \rightarrow 0 $ becomes an integral.
235+
236+
However, if the change i area is small compared to the pipe length we can approximate
237+
231238
\[
232-
F_{f}= A \cdot \rho \cdot g \cdot h_{f}= \int \frac{1}{A(x)} \cdot \rho \cdot g \left[ f \cdot \left(\frac{1}{D(x)}\right) \frac{Q^{2}}{2g} \right] dx
239+
F_{f}= \int_{0}^{1} \frac{1}{A(x)} \cdot \rho \cdot g \left[ f \cdot \left(\frac{L}{D(x)}\right) \frac{Q^{2}}{2g} \right] dx
233240
\]
234-
Assuming a linear diameter distribution from the inlet to the outlet
241+
Assuming a linear diameter distribution from the inlet to the outlet
242+
235243
\[
236-
D\left(x\right)=D_{1}+\frac{\left(D_{2}-D_{1} \right)}{L}\cdot x
244+
D\left(x\right)=D_{1}+\left(D_{2}-D_{1} \right)\cdot x= D_{1}\cdot\left(1+\delta\cdot x\right) \; \; x \in [0,1]
237245
\]
238-
and
246+
where
239247
\[
240-
A\left(x\right)=\frac{\pi}{4} D^{2}
248+
\delta=\frac{\left(D_{2}-D_{1} \right)}{D_1}
241249
\]
242-
%
250+
and
243251
\[
244-
D\left(x\right)=D_{1}+\frac{\left(D_{2}-D_{1} \right)}{L}\cdot x
252+
A\left(x\right)=\frac{\pi}{4} D^{2}=A_{1} \cdot \left(1+2\delta x +\delta^{2} x^{2}\right)
245253
\]
254+
246255
%
247256
\[
248257
F_{f}= A \cdot \rho \cdot g \cdot h_{f}= \left[\frac{\rho \cdot L \cdot Q^{2}}{2} \right] \int \frac{1}{A(x)\cdot D(x)} dx
249258
\]
250259
%
251260
\[
252-
F_{f}= A \cdot \rho \cdot g \cdot h_{f}= \left[\frac{2 \rho \cdot L \cdot Q^{2}}{\pi} \right] \int \frac{1}{D^{3}(x)} dx
261+
F_{f}= f \cdot \left[\frac{2 \rho \cdot L \cdot Q^{2}}{A_{1} D_{1}} \right] \int_{0}^{1} \frac{1}{\left(1+\delta\cdot x \right)^{3}} dx
253262
\]
254263
%
255264
In principle the friction factor $f$ is a function of the Reynolds number $Re$ and relative roughness $\epsilon/D$. Ignoring this, and setting both to the constant value based on the mean value
256265

257266
%
267+
\subsection{Kladd}
268+
%
269+
\[
270+
A\left(x\right)=\frac{\pi}{4} D^{2}=\frac{\pi}{4} D_{1}^{2}\left(1+2\delta x +\delta^{2} x^{2}\right)
271+
\]
272+
273+
\[
274+
D\left(x\right)=D_{1}+\left(D_{2}-D_{1} \right)\cdot x= D_{1}\cdot\left(1+\frac{\left(D_{2}-D_{1} \right)}{D_1}\cdot x\right) \; \; x \in [0,1]
275+
\]
276+
%
277+
\[
278+
D\left(x\right)=D_{1}+\frac{\left(D_{2}-D_{1} \right)}{L}\cdot x
279+
\]
280+
%
281+
\[
282+
F_{f}= A \cdot \rho \cdot g \cdot h_{f}= \left[\frac{\rho \cdot L \cdot Q^{2}}{2} \right] \int \frac{1}{A(x)\cdot D(x)} dx
283+
\]
284+
%
285+
\[
286+
F_{f}= A \cdot \rho \cdot g \cdot h_{f}= \left[\frac{2 \rho \cdot L \cdot Q^{2}}{\pi} \right] \int \frac{1}{D^{3}(x)} dx
287+
\]
258288
%
259289
\bibliographystyle{plain}
260290
\bibliography{ohpl}
291+
\nocite{*}
261292
\end{document}

OpenHPL/Waterway/Pipe.mo

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -21,13 +21,14 @@ model Pipe "Model of a pipe"
2121
parameter Boolean SteadyState=data.SteadyState "If true, starts in steady state" annotation (Dialog(group="Initialization"));
2222
parameter SI.VolumeFlowRate Vdot_0=data.Vdot_0 "Initial flow rate of the pipe" annotation (Dialog(group="Initialization"));
2323

24-
SI.Diameter D_ = 0.5 * (D_i + D_o) "Average diameter";
24+
SI.Diameter D_ = sqrt((4/C.pi)*A_) "Average diameter";
2525
SI.Mass m "Water mass";
2626
SI.Area A_i = D_i ^ 2 * C.pi / 4 "Inlet cross-sectional area";
2727
SI.Area A_o = D_o ^ 2 * C.pi / 4 "Outlet cross-sectional area";
28-
SI.Area A_ = D_ ^ 2 * C.pi / 4 "Average cross-sectional area";
28+
SI.Area A_ = 0.5 * (A_i + A_o) "Average cross-sectional area";
29+
2930
Real cos_theta = H / L "Slope ratio";
30-
SI.Velocity v "Water velocity";
31+
SI.Velocity v "Average Water velocity";
3132
SI.Force F_f "Friction force";
3233
SI.Force F_taper "Tape friction force";
3334
SI.Momentum M "Water momentum";

0 commit comments

Comments
 (0)