You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: OpenHPL/Resources/Documents/Developer_docs/OpenHPL_Pipe.tex
+35-1Lines changed: 35 additions & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -260,8 +260,13 @@ \subsection{Friction loss of variable area pipe}
260
260
\[
261
261
F_{f}= f \cdot\left[\frac{2 \rho\cdot L \cdot Q^{2}}{A_{1} D_{1}} \right] \int_{0}^{1} \frac{1}{\left(1+\delta\cdot x \right)^{3}} dx
262
262
\]
263
+
264
+
\[
265
+
\int_{0}^{1} \frac{1}{\left(1+\delta\cdot x \right)^{3}} dx=\left[ \frac{-1}{(2\cdot d^{3}\cdot x^{2} + 4\cdot d^{2}\cdot x + 2\cdot d)}\right]_{0}^{1}
266
+
\]
263
267
%
264
-
In principle the friction factor $f$ is a function of the Reynolds number $Re$ and relative roughness $\epsilon/D$. Ignoring this, and setting both to the constant value based on the mean value
268
+
In principle the friction factor $f$ is a function of the Reynolds number $Re$ and relative roughness $\epsilon/D$. The Reynolds number depends on the local velocity (dependent on the local area) and the local diameter. In the current model this is ignored, and the mean velocity and diameter is used in the calculation.
269
+
265
270
266
271
%
267
272
\subsection{Kladd}
@@ -285,6 +290,35 @@ \subsection{Kladd}
285
290
\[
286
291
F_{f}= A \cdot\rho\cdot g \cdot h_{f}= \left[\frac{2 \rho\cdot L \cdot Q^{2}}{\pi} \right] \int\frac{1}{D^{3}(x)} dx
287
292
\]
293
+
\[
294
+
F_{f}= A \cdot\rho\cdot g \cdot h_{f}= \left[\frac{2 \rho\cdot L \cdot Q^{2}}{\pi} \right] \int\frac{1}{D^{3}(x)} dx
0 commit comments