|
76 | 76 | <div class="hero-container mdl-grid">
|
77 | 77 | <div class="mdl-cell--8-col mdl-cell--6-col-tablet mdl-cell--4-col-phone">
|
78 | 78 |
|
79 |
| - <div class="sub-title">Take the Learning Interpretability Tool for a spin!</div> |
| 79 | + <div class="sub-title">Take LIT for a spin!</div> |
80 | 80 | <div class="sub-copy">Get a feel for LIT in a variety of hosted demos.</div>
|
81 | 81 | </div>
|
82 | 82 | </div>
|
|
98 | 98 | </div>
|
99 | 99 | <div class="demo-card mdl-cell mdl-cell--6-col mdl-cell--4-col-tablet mdl-cell--4-col-phone">
|
100 | 100 | <div class="demo-card-title"><a href="/lit/demos/images.html" target="_blank">Image classification</a></div>
|
101 |
| - <div class="demo-card-tags"> <span class="demo-tag"> images </span> <span class="demo-tag"> mutli-class classification </span> |
| 101 | + <div class="demo-card-tags"> <span class="demo-tag"> images </span> <span class="demo-tag"> multiclass classification </span> |
102 | 102 | </div>
|
103 | 103 | <div class="demo-card-data-source-title">DATA SOURCES</div>
|
104 | 104 | <div class="demo-card-data-source">
|
105 | 105 | Imagenette
|
106 | 106 | </div>
|
107 |
| - <div class="demo-card-copy">Analyze an image classification model with LIT, including muliple image salience techniques.</div> |
| 107 | + <div class="demo-card-copy">Analyze an image classification model with LIT, including multiple image salience techniques.</div> |
108 | 108 | <div class="demo-card-cta-button"><a href="/lit/demos/images.html"></a></div>
|
109 | 109 | </div>
|
110 | 110 | <div class="demo-card mdl-cell mdl-cell--6-col mdl-cell--4-col-tablet mdl-cell--4-col-phone">
|
|
115 | 115 | <div class="demo-card-data-source">
|
116 | 116 | Stanford Sentiment Treebank, Multi-Genre NLI Corpus, Semantic Textual Similarity Benchmark
|
117 | 117 | </div>
|
118 |
| - <div class="demo-card-copy">Use LIT with any of three tasks from the General Language Understanding Evaluation (GLUE) benchmark suite. This demo contains binary classification (for sentiment analysis, using SST2), multi-class classification (for textual entailment, using MultiNLI), and regression (for measuringtext similarity, using STS-B).</div> |
| 118 | + <div class="demo-card-copy">Use LIT with any of three tasks from the General Language Understanding Evaluation (GLUE) benchmark suite. This demo contains binary classification (for sentiment analysis, using SST2), multi-class classification (for textual entailment, using MultiNLI), and regression (for measuring text similarity, using STS-B).</div> |
119 | 119 | <div class="demo-card-cta-button"><a href="/lit/demos/glue.html"></a></div>
|
120 | 120 | </div>
|
121 | 121 | <div class="demo-card mdl-cell mdl-cell--6-col mdl-cell--4-col-tablet mdl-cell--4-col-phone">
|
|
162 | 162 | <div class="demo-card-copy">Use a T5 model to summarize text. For any example of interest, quickly find similar examples from the training set, using an approximate nearest-neighbors index.</div>
|
163 | 163 | <div class="demo-card-cta-button"><a href="/lit/demos/t5.html"></a></div>
|
164 | 164 | </div>
|
| 165 | +<div class="demo-card mdl-cell mdl-cell--6-col mdl-cell--4-col-tablet mdl-cell--4-col-phone"> |
| 166 | + <div class="demo-card-title"><a href="/lit/demos/is_eval.html" target="_blank">Evaluating input salience methods</a></div> |
| 167 | + <div class="demo-card-tags"> <span class="demo-tag"> salience </span> <span class="demo-tag"> evaluation </span> |
| 168 | + </div> |
| 169 | + <div class="demo-card-data-source-title">DATA SOURCES</div> |
| 170 | + <div class="demo-card-data-source"> |
| 171 | + Stanford Sentiment Treebank, Toxicity |
165 | 172 | </div>
|
| 173 | + <div class="demo-card-copy">Explore the faithfulness of input salience methods across different datasets and artificial shortcuts.</div> |
| 174 | + <div class="demo-card-cta-button"><a href="/lit/demos/is_eval.html"></a></div> |
| 175 | +</div> |
| 176 | + </div> |
| 177 | +</div> |
166 | 178 |
|
167 | 179 | </div>
|
168 | 180 | <div class="fixed-sub-navigation hide-me">
|
|
0 commit comments