|
| 1 | +% CHAPTER01 |
| 2 | +% condEntropy - Compute conditional entropy z=H(x|y) of two discrete variables x and y. |
| 3 | +% entropy - Compute entropy z=H(x) of a discrete variable x. |
| 4 | +% jointEntropy - Compute joint entropy z=H(x,y) of two discrete variables x and y. |
| 5 | +% mutInfo - Compute mutual information I(x,y) of two discrete variables x and y. |
| 6 | +% nmi - Compute normalized mutual information I(x,y)/sqrt(H(x)*H(y)) of two discrete variables x and y. |
| 7 | +% nvi - Compute normalized variation information z=(1-I(x,y)/H(x,y)) of two discrete variables x and y. |
| 8 | +% relatEntropy - Compute relative entropy (a.k.a KL divergence) z=KL(p(x)||p(y)) of two discrete variables x and y. |
| 9 | +% CHAPTER02 |
| 10 | +% logDirichlet - Compute log pdf of a Dirichlet distribution. |
| 11 | +% logGauss - Compute log pdf of a Gaussian distribution. |
| 12 | +% logKde - Compute log pdf of kernel density estimator. |
| 13 | +% logMn - Compute log pdf of a multinomial distribution. |
| 14 | +% logMvGamma - Compute logarithm multivariate Gamma function |
| 15 | +% logSt - Compute log pdf of a Student's t distribution. |
| 16 | +% logVmf - Compute log pdf of a von Mises-Fisher distribution. |
| 17 | +% logWishart - Compute log pdf of a Wishart distribution. |
| 18 | +% CHAPTER03 |
| 19 | +% linReg - Fit linear regression model y=w'x+w0 |
| 20 | +% linRegFp - Fit empirical Bayesian linear model with Mackay fixed point method (p.168) |
| 21 | +% linRegPred - Compute linear regression model reponse y = w'*X+w0 and likelihood |
| 22 | +% linRnd - Generate data from a linear model p(t|w,x)=G(w'x+w0,sigma), sigma=sqrt(1/beta) |
| 23 | +% CHAPTER04 |
| 24 | +% binPlot - Plot binary classification result for 2d data |
| 25 | +% fda - Fisher (linear) discriminant analysis |
| 26 | +% logitBin - Logistic regression for binary classification optimized by Newton-Raphson method. |
| 27 | +% logitBinPred - Prediction of binary logistic regression model |
| 28 | +% logitMn - Multinomial regression for multiclass problem (Multinomial likelihood) |
| 29 | +% logitMnPred - Prediction of multiclass (multinomial) logistic regression model |
| 30 | +% sigmoid - Sigmod function |
| 31 | +% softmax - Softmax function |
| 32 | +% CHAPTER05 |
| 33 | +% mlpReg - Train a multilayer perceptron neural network |
| 34 | +% mlpRegPred - Multilayer perceptron prediction |
| 35 | +% CHAPTER06 |
| 36 | +% kn2sd - Transform a kernel matrix (or inner product matrix) to a squared distance matrix |
| 37 | +% knCenter - Centerize the data in the kernel space |
| 38 | +% knGauss - Gaussian (RBF) kernel K = exp(-|x-y|/(2s)); |
| 39 | +% knKmeans - Perform kernel kmeans clustering. |
| 40 | +% knKmeansPred - Prediction for kernel kmeans clusterng |
| 41 | +% knLin - Linear kernel (inner product) |
| 42 | +% knPca - Kernel PCA |
| 43 | +% knPcaPred - Prediction for kernel PCA |
| 44 | +% knPoly - Polynomial kernel k(x,y)=(x'y+c)^o |
| 45 | +% knReg - Gaussian process (kernel) regression |
| 46 | +% knRegPred - Prediction for Gaussian Process (kernel) regression model |
| 47 | +% sd2kn - Transform a squared distance matrix to a kernel matrix. |
| 48 | +% CHAPTER07 |
| 49 | +% rvmBinFp - Relevance Vector Machine (ARD sparse prior) for binary classification. |
| 50 | +% rvmBinPred - Prodict the label for binary logistic regression model |
| 51 | +% rvmRegFp - Relevance Vector Machine (ARD sparse prior) for regression |
| 52 | +% rvmRegPred - Compute RVM regression model reponse y = w'*X+w0 and likelihood |
| 53 | +% rvmRegSeq - Sparse Bayesian Regression (RVM) using sequential algorithm |
| 54 | +% CHAPTER08 |
| 55 | +% MRF |
| 56 | +% mrfBethe - Compute Bethe energy |
| 57 | +% mrfBp - Undirected graph belief propagation for MRF |
| 58 | +% mrfGibbs - Compute Gibbs energy |
| 59 | +% mrfIsGa - Contruct a latent Ising MRF with Gaussian observation |
| 60 | +% mrfMf - Mean field for MRF |
| 61 | +% NaiveBayes |
| 62 | +% nbBern - Naive bayes classifier with indepenet Bernoulli. |
| 63 | +% nbBernPred - Prediction of naive Bayes classifier with independent Bernoulli. |
| 64 | +% nbGauss - Naive bayes classifier with indepenet Gaussian |
| 65 | +% nbGaussPred - Prediction of naive Bayes classifier with independent Gaussian. |
| 66 | +% CHAPTER09 |
| 67 | +% kmeans - Perform kmeans clustering. |
| 68 | +% kmeansPred - Prediction for kmeans clusterng |
| 69 | +% kmeansRnd - Generate samples from a Gaussian mixture distribution with common variances (kmeans model). |
| 70 | +% kmedoids - Perform k-medoids clustering. |
| 71 | +% kseeds - Perform kmeans++ seeding |
| 72 | +% linRegEm - Fit empirical Bayesian linear regression model with EM (p.448 chapter 9.3.4) |
| 73 | +% mixBernEm - Perform EM algorithm for fitting the Bernoulli mixture model. |
| 74 | +% mixBernRnd - Generate samples from a Bernoulli mixture distribution. |
| 75 | +% mixGaussEm - Perform EM algorithm for fitting the Gaussian mixture model. |
| 76 | +% mixGaussPred - Predict label and responsibility for Gaussian mixture model. |
| 77 | +% mixGaussRnd - Genarate samples form a Gaussian mixture model. |
| 78 | +% rvmBinEm - Relevance Vector Machine (ARD sparse prior) for binary classification. |
| 79 | +% rvmRegEm - Relevance Vector Machine (ARD sparse prior) for regression |
| 80 | +% CHAPTER10 |
| 81 | +% linRegVb - Variational Bayesian inference for linear regression. |
| 82 | +% mixGaussEvidence - Variational lower bound of the model evidence (log of marginal likelihood) |
| 83 | +% mixGaussVb - Variational Bayesian inference for Gaussian mixture. |
| 84 | +% mixGaussVbPred - Predict label and responsibility for Gaussian mixture model trained by VB. |
| 85 | +% rvmRegVb - Variational Bayesian inference for RVM regression. |
| 86 | +% CHAPTER11 |
| 87 | +% dirichletRnd - Generate samples from a Dirichlet distribution. |
| 88 | +% discreteRnd - Generate samples from a discrete distribution (multinomial). |
| 89 | +% Gauss - Class for Gaussian distribution used by Dirichlet process |
| 90 | +% gaussRnd - Generate samples from a Gaussian distribution. |
| 91 | +% GaussWishart - Class for Gaussian-Wishart distribution used by Dirichlet process |
| 92 | +% mixDpGb - Collapsed Gibbs sampling for Dirichlet process (infinite) mixture model. |
| 93 | +% mixDpGbOl - Online collapsed Gibbs sampling for Dirichlet process (infinite) mixture model. |
| 94 | +% mixGaussGb - Collapsed Gibbs sampling for Dirichlet process (infinite) Gaussian mixture model (a.k.a. DPGM). |
| 95 | +% mixGaussSample - Genarate samples form a Gaussian mixture model with GaussianWishart prior. |
| 96 | +% CHAPTER12 |
| 97 | +% fa - Perform EM algorithm for factor analysis model |
| 98 | +% pca - Principal component analysis |
| 99 | +% pcaEm - Perform EM-like algorithm for PCA (by Sam Roweis). |
| 100 | +% pcaEmC - Perform Constrained EM like algorithm for PCA. |
| 101 | +% ppcaEm - Perform EM algorithm to maiximize likelihood of probabilistic PCA model. |
| 102 | +% ppcaRnd - Generate data from probabilistic PCA model |
| 103 | +% ppcaVb - Perform variatioanl Bayeisan inference for probabilistic PCA model. |
| 104 | +% CHAPTER13 |
| 105 | +% HMM |
| 106 | +% hmmEm - EM algorithm to fit the parameters of HMM model (a.k.a Baum-Welch algorithm) |
| 107 | +% hmmFilter - HMM forward filtering algorithm. |
| 108 | +% hmmRnd - Generate a data sequence from a hidden Markov model. |
| 109 | +% hmmSmoother - HMM smoothing alogrithm (normalized forward-backward or normalized alpha-beta algorithm). |
| 110 | +% hmmViterbi - Viterbi algorithm (calculated in log scale to improve numerical stability). |
| 111 | +% LDS |
| 112 | +% kalmanFilter - Kalman filter (forward algorithm for linear dynamic system) |
| 113 | +% kalmanSmoother - Kalman smoother (forward-backward algorithm for linear dynamic system) |
| 114 | +% ldsEm - EM algorithm for parameter estimation of linear dynamic system. |
| 115 | +% ldsPca - Subspace method for learning linear dynamic system. |
| 116 | +% ldsRnd - Generate a data sequence from linear dynamic system. |
| 117 | +% CHAPTER14 |
| 118 | +% adaboostBin - Adaboost for binary classification (weak learner: kmeans) |
| 119 | +% adaboostBinPred - Prediction of binary Adaboost |
| 120 | +% mixLinPred - Prediction function for mxiture of linear regression |
| 121 | +% mixLinReg - Mixture of linear regression |
| 122 | +% mixLinRnd - Generate data from mixture of linear model |
| 123 | +% mixLogitBin - Mixture of logistic regression model for binary classification optimized by Newton-Raphson method |
| 124 | +% mixLogitBinPred - Prediction function for mixture of logistic regression |
0 commit comments