Skip to content

Problem with samples #4

@kikomle

Description

@kikomle

Screenshot 2023-03-17 at 11 11 42

I am getting this error constantly, I tried with test_size instead of train_size but I am getting the same result.

Here is my code:
`import csv
import datetime
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import seaborn as sns
import sklearn.metrics
import tensorflow as tf

from numpy import mean
from numpy import std
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras import activations
from tensorflow.keras import layers

from wwo_hist import retrieve_hist_data

BATCH_SIZE = 64
MELTING_TEMPERATURE = 2
MIN_SNOW_CM = 0.5 # Above this value, we consider it as snow
NUM_EPOCHS = 20
OUTPUT_DATASET_FILE = "snow_dataset.csv"
TFL_MODEL_FILE = "snow_forecast_model.tflite"
TFL_MODEL_HEADER_FILE = "snow_forecast_model.h"
TF_MODEL = "snow_forecast"

print("data import")

frequency = 1
api_key = '27a946a50c0e4b0daec134825230803'
location_list = ['canazei']
df_weather = retrieve_hist_data(api_key,
location_list,
'01-JAN-2011',
'31-DEC-2012',
frequency,
location_label = False,
export_csv = False,
store_df = True)
t_list = df_weather[0].tempC.astype(float).to_list()
h_list = df_weather[0].humidity.astype(float).to_list()
s_list = df_weather[0].totalSnow_cm.astype(float).to_list()

print("binarize")

def binarize(snow, threshold):
if snow > threshold:
return 1
else:
return 0

print("graphprint")

#s_bin_list = [binarize(snow, 0.5) for snow in s_list]
#cm = plt.colormaps.get_cmap('gray_r')
#plt.figure(dpi=150)
#sc = plt.scatter(t_list, h_list, c=s_bin_list, cmap=cm, label="Snow")
#plt.colorbar(sc)
#plt.grid(True)
#plt.title("Snow(T, H)")
#plt.xlabel("Temperature - °C")
#plt.ylabel("Humidity - %")
#plt.show()

print("labels")

def gen_label(snow, temperature):
if snow > 0.5 and temperature < 2:
return "Yes"
else:
return "No"

snow_labels = [gen_label(snow, temp) for snow, temp in zip(s_list, t_list)]

csv_header = ["Temp0", "Temp1", "Temp2", "Humi0", "Humi1", "Humi2", "Snow"]
df_dataset = pd.DataFrame(list(zip(t_list[:-2], t_list[1:-1], t_list[:-2], h_list[:-2], h_list[1:-1], h_list[:2], snow_labels[2:])), columns = csv_header)

df0 = df_dataset[df_dataset['Snow'] == "No"]
df1 = df_dataset[df_dataset['Snow'] == "Yes"]
if len(df1.index) < len(df0.index):
df0_sub = df0.sample(len(df1.index))
df_dataset = pd.concat([df0_sub, df1])
else:
df1_sub = df1.sample(len(df0.index))
df_dataset = pd.concat([df1_sub, df0])

t_list = df_dataset['Temp0'].tolist()
h_list = df_dataset['Humi0'].tolist()
t_list = t_list + df_dataset['Temp2'].tail(2).tolist()
h_list = t_list + df_dataset['Humi2'].tail(2).tolist()

t_avg = mean(t_list)
h_avg = mean(h_list)
t_std = std(t_list)
h_std = std(h_list)

print("COPY HERE !!!!!")
print("Temperature - [MEAN, STD]", round(t_avg, 5), round(t_std, 5))
print("Humidity - [MEAN, STD]", round(h_avg, 5), round(h_std, 5))

def scaling(val, avg, std):
return (val - avg) / std;

df_dataset['Temp0'] = df_dataset['Temp0'].apply(lambda x:scaling(x, t_avg, t_std))
df_dataset['Temp1'] = df_dataset['Temp1'].apply(lambda x:scaling(x, t_avg, t_std))
df_dataset['Temp2'] = df_dataset['Temp2'].apply(lambda x:scaling(x, t_avg, t_std))

df_dataset['Humi0'] = df_dataset['Humi0'].apply(lambda x:scaling(x, t_avg, t_std))
df_dataset['Humi1'] = df_dataset['Humi1'].apply(lambda x:scaling(x, t_avg, t_std))
df_dataset['Humi2'] = df_dataset['Humi2'].apply(lambda x:scaling(x, t_avg, t_std))

f_names = df_dataset.columns.values[0:6]
l_name = df_dataset.columns
x = df_dataset[f_names]
y = df_dataset[l_name]

labelencoder = LabelEncoder()
labelencoder.fit(y.Snow)
y_encoded = labelencoder.transform(y.Snow)

Split 1 (85% vs 15%)

x_train, x_validate_test, y_train, y_validate_test = train_test_split(x, y_encoded, train_size=0.15, random_state = 1)

Split 2 (50% vs 50%)

x_test, x_validate, y_test, y_validate = train_test_split(x_validate_test, y_validate_test, train_size=0.50, random_state = 3)

model = tf.keras.Sequential()
model.add(layers.Dense(12, activations='relu', input_shape=(len(f_names),)))
model.add(layers.Dropout(0.2))
model.add(layers.Dense(1, activation='sigmoid'))
model.summary()

`

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions