-
Notifications
You must be signed in to change notification settings - Fork 78
Description
I am getting this error constantly, I tried with test_size instead of train_size but I am getting the same result.
Here is my code:
`import csv
import datetime
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import seaborn as sns
import sklearn.metrics
import tensorflow as tf
from numpy import mean
from numpy import std
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras import activations
from tensorflow.keras import layers
from wwo_hist import retrieve_hist_data
BATCH_SIZE = 64
MELTING_TEMPERATURE = 2
MIN_SNOW_CM = 0.5 # Above this value, we consider it as snow
NUM_EPOCHS = 20
OUTPUT_DATASET_FILE = "snow_dataset.csv"
TFL_MODEL_FILE = "snow_forecast_model.tflite"
TFL_MODEL_HEADER_FILE = "snow_forecast_model.h"
TF_MODEL = "snow_forecast"
print("data import")
frequency = 1
api_key = '27a946a50c0e4b0daec134825230803'
location_list = ['canazei']
df_weather = retrieve_hist_data(api_key,
location_list,
'01-JAN-2011',
'31-DEC-2012',
frequency,
location_label = False,
export_csv = False,
store_df = True)
t_list = df_weather[0].tempC.astype(float).to_list()
h_list = df_weather[0].humidity.astype(float).to_list()
s_list = df_weather[0].totalSnow_cm.astype(float).to_list()
print("binarize")
def binarize(snow, threshold):
if snow > threshold:
return 1
else:
return 0
print("graphprint")
#s_bin_list = [binarize(snow, 0.5) for snow in s_list]
#cm = plt.colormaps.get_cmap('gray_r')
#plt.figure(dpi=150)
#sc = plt.scatter(t_list, h_list, c=s_bin_list, cmap=cm, label="Snow")
#plt.colorbar(sc)
#plt.grid(True)
#plt.title("Snow(T, H)")
#plt.xlabel("Temperature - °C")
#plt.ylabel("Humidity - %")
#plt.show()
print("labels")
def gen_label(snow, temperature):
if snow > 0.5 and temperature < 2:
return "Yes"
else:
return "No"
snow_labels = [gen_label(snow, temp) for snow, temp in zip(s_list, t_list)]
csv_header = ["Temp0", "Temp1", "Temp2", "Humi0", "Humi1", "Humi2", "Snow"]
df_dataset = pd.DataFrame(list(zip(t_list[:-2], t_list[1:-1], t_list[:-2], h_list[:-2], h_list[1:-1], h_list[:2], snow_labels[2:])), columns = csv_header)
df0 = df_dataset[df_dataset['Snow'] == "No"]
df1 = df_dataset[df_dataset['Snow'] == "Yes"]
if len(df1.index) < len(df0.index):
df0_sub = df0.sample(len(df1.index))
df_dataset = pd.concat([df0_sub, df1])
else:
df1_sub = df1.sample(len(df0.index))
df_dataset = pd.concat([df1_sub, df0])
t_list = df_dataset['Temp0'].tolist()
h_list = df_dataset['Humi0'].tolist()
t_list = t_list + df_dataset['Temp2'].tail(2).tolist()
h_list = t_list + df_dataset['Humi2'].tail(2).tolist()
t_avg = mean(t_list)
h_avg = mean(h_list)
t_std = std(t_list)
h_std = std(h_list)
print("COPY HERE !!!!!")
print("Temperature - [MEAN, STD]", round(t_avg, 5), round(t_std, 5))
print("Humidity - [MEAN, STD]", round(h_avg, 5), round(h_std, 5))
def scaling(val, avg, std):
return (val - avg) / std;
df_dataset['Temp0'] = df_dataset['Temp0'].apply(lambda x:scaling(x, t_avg, t_std))
df_dataset['Temp1'] = df_dataset['Temp1'].apply(lambda x:scaling(x, t_avg, t_std))
df_dataset['Temp2'] = df_dataset['Temp2'].apply(lambda x:scaling(x, t_avg, t_std))
df_dataset['Humi0'] = df_dataset['Humi0'].apply(lambda x:scaling(x, t_avg, t_std))
df_dataset['Humi1'] = df_dataset['Humi1'].apply(lambda x:scaling(x, t_avg, t_std))
df_dataset['Humi2'] = df_dataset['Humi2'].apply(lambda x:scaling(x, t_avg, t_std))
f_names = df_dataset.columns.values[0:6]
l_name = df_dataset.columns
x = df_dataset[f_names]
y = df_dataset[l_name]
labelencoder = LabelEncoder()
labelencoder.fit(y.Snow)
y_encoded = labelencoder.transform(y.Snow)
Split 1 (85% vs 15%)
x_train, x_validate_test, y_train, y_validate_test = train_test_split(x, y_encoded, train_size=0.15, random_state = 1)
Split 2 (50% vs 50%)
x_test, x_validate, y_test, y_validate = train_test_split(x_validate_test, y_validate_test, train_size=0.50, random_state = 3)
model = tf.keras.Sequential()
model.add(layers.Dense(12, activations='relu', input_shape=(len(f_names),)))
model.add(layers.Dropout(0.2))
model.add(layers.Dense(1, activation='sigmoid'))
model.summary()
`
