-
Notifications
You must be signed in to change notification settings - Fork 476
/
Copy pathstructurev2_table.h
executable file
·113 lines (100 loc) · 5.14 KB
/
structurev2_table.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_postprocess_op.h"
#include "fastdeploy/vision/ocr/ppocr/structurev2_table_postprocessor.h"
#include "fastdeploy/vision/ocr/ppocr/structurev2_table_preprocessor.h"
#include "fastdeploy/utils/unique_ptr.h"
namespace fastdeploy {
namespace vision {
/** \brief All OCR series model APIs are defined inside this namespace
*
*/
namespace ocr {
/*! @brief DBDetector object is used to load the detection model provided by PaddleOCR.
*/
class FASTDEPLOY_DECL StructureV2Table : public FastDeployModel {
public:
StructureV2Table();
/** \brief Set path of model file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g ./en_ppstructure_mobile_v2.0_SLANet_infer/model.pdmodel.
* \param[in] params_file Path of parameter file, e.g ./en_ppstructure_mobile_v2.0_SLANet_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`.
* \param[in] model_format Model format of the loaded model, default is Paddle format.
*/
StructureV2Table(const std::string& model_file,
const std::string& params_file = "",
const std::string& table_char_dict_path = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE);
/** \brief Clone a new StructureV2Table Recognizer with less memory usage when multiple instances of the same model are created
*
* \return new StructureV2Table* type unique pointer
*/
virtual std::unique_ptr<StructureV2Table> Clone() const;
/// Get model's name
std::string ModelName() const { return "ppocr/ocr_table"; }
/** \brief Predict the input image and get OCR detection model result.
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
* \param[in] boxes_result The output of OCR detection model result will be writen to this structure.
* \return true if the prediction is successed, otherwise false.
*/
virtual bool Predict(const cv::Mat& img,
std::vector<std::vector<std::array<int, 2>>>* boxes_result,
std::vector<std::string>* structure_result);
/** \brief Predict the input image and get OCR detection model result.
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
* \param[in] ocr_result The output of OCR detection model result will be writen to this structure.
* \return true if the prediction is successed, otherwise false.
*/
virtual bool Predict(const cv::Mat& img, vision::OCRResult* ocr_result);
/** \brief BatchPredict the input image and get OCR detection model result.
*
* \param[in] images The list input of image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
* \param[in] det_results The output of OCR detection model result will be writen to this structure.
* \return true if the prediction is successed, otherwise false.
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
std::vector<std::vector<std::vector<std::array<int, 2>>>>* det_results,
std::vector<std::vector<std::string>>* structure_results);
/** \brief BatchPredict the input image and get OCR detection model result.
*
* \param[in] images The list input of image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
* \param[in] ocr_results The output of OCR detection model result will be writen to this structure.
* \return true if the prediction is successed, otherwise false.
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
std::vector<vision::OCRResult>* ocr_results);
/// Get preprocessor reference of StructureV2TablePreprocessor
virtual StructureV2TablePreprocessor& GetPreprocessor() {
return preprocessor_;
}
/// Get postprocessor reference of StructureV2TablePostprocessor
virtual StructureV2TablePostprocessor& GetPostprocessor() {
return postprocessor_;
}
private:
bool Initialize();
StructureV2TablePreprocessor preprocessor_;
StructureV2TablePostprocessor postprocessor_;
};
} // namespace ocr
} // namespace vision
} // namespace fastdeploy