@@ -387,7 +387,7 @@ class ToTensor(BaseTransform[_InputT, "Tensor"]):
387
387
>>> img_arr = ((paddle.rand((4, 5, 3)) * 255.).astype('uint8')).numpy()
388
388
>>> fake_img = Image.fromarray(img_arr)
389
389
>>> transform = T.ToTensor()
390
- >>> tensor = transform(fake_img) # type: ignore[call-overload]
390
+ >>> tensor = transform(fake_img)
391
391
>>> print(tensor.shape)
392
392
[3, 4, 5]
393
393
>>> print(tensor.dtype)
@@ -457,11 +457,11 @@ class Resize(BaseTransform[_InputT, _RetT]):
457
457
458
458
>>> fake_img = Image.fromarray((np.random.rand(256, 300, 3) * 255.).astype(np.uint8))
459
459
>>> transform = Resize(size=224)
460
- >>> converted_img = transform(fake_img) # type: ignore[call-overload]
460
+ >>> converted_img = transform(fake_img)
461
461
>>> print(converted_img.size)
462
462
(262, 224)
463
463
>>> transform = Resize(size=(200,150))
464
- >>> converted_img = transform(fake_img) # type: ignore[call-overload]
464
+ >>> converted_img = transform(fake_img)
465
465
>>> print(converted_img.size)
466
466
(150, 200)
467
467
"""
@@ -530,7 +530,7 @@ class RandomResizedCrop(BaseTransform[_InputT, _RetT]):
530
530
531
531
>>> transform = RandomResizedCrop(224)
532
532
>>> fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
533
- >>> fake_img = transform(fake_img) # type: ignore[call-overload]
533
+ >>> fake_img = transform(fake_img)
534
534
>>> print(fake_img.size)
535
535
(224, 224)
536
536
@@ -736,7 +736,7 @@ class CenterCrop(BaseTransform[_InputT, _RetT]):
736
736
737
737
>>> transform = CenterCrop(224)
738
738
>>> fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
739
- >>> fake_img = transform(fake_img) # type: ignore[call-overload]
739
+ >>> fake_img = transform(fake_img)
740
740
>>> print(fake_img.size)
741
741
(224, 224)
742
742
@@ -918,7 +918,7 @@ class Normalize(BaseTransform[_InputT, _RetT]):
918
918
... data_format='HWC')
919
919
...
920
920
>>> fake_img = paddle.rand([300,320,3]).numpy() * 255.
921
- >>> fake_img = normalize(fake_img) # type: ignore[call-overload]
921
+ >>> fake_img = normalize(fake_img)
922
922
>>> print(fake_img.shape)
923
923
(300, 320, 3)
924
924
>>> print(fake_img.max(), fake_img.min())
@@ -985,7 +985,7 @@ class Transpose(BaseTransform[_InputT, _RetT]):
985
985
986
986
>>> transform = Transpose()
987
987
>>> fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
988
- >>> fake_img = transform(fake_img) # type: ignore[call-overload]
988
+ >>> fake_img = transform(fake_img)
989
989
>>> print(fake_img.shape)
990
990
(3, 300, 320)
991
991
@@ -1042,7 +1042,7 @@ class BrightnessTransform(BaseTransform[_InputT, _RetT]):
1042
1042
>>> print(fake_img.load()[1,1]) # type: ignore[index]
1043
1043
(60, 169, 34)
1044
1044
>>> # doctest: +SKIP('random sample in Brightness function')
1045
- >>> fake_img = transform(fake_img) # type: ignore[call-overload]
1045
+ >>> fake_img = transform(fake_img)
1046
1046
>>> print(fake_img.load()[1,1])
1047
1047
(68, 192, 38)
1048
1048
@@ -1089,7 +1089,7 @@ class ContrastTransform(BaseTransform[_InputT, _RetT]):
1089
1089
1090
1090
>>> transform = ContrastTransform(0.4)
1091
1091
>>> fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
1092
- >>> fake_img = transform(fake_img) # type: ignore[call-overload]
1092
+ >>> fake_img = transform(fake_img)
1093
1093
>>> print(fake_img.size)
1094
1094
(224, 224)
1095
1095
@@ -1138,7 +1138,7 @@ class SaturationTransform(BaseTransform[_InputT, _RetT]):
1138
1138
1139
1139
>>> transform = SaturationTransform(0.4)
1140
1140
>>> fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
1141
- >>> fake_img = transform(fake_img) # type: ignore[call-overload]
1141
+ >>> fake_img = transform(fake_img)
1142
1142
>>> print(fake_img.size)
1143
1143
(224, 224)
1144
1144
"""
@@ -1184,7 +1184,7 @@ class HueTransform(BaseTransform[_InputT, _RetT]):
1184
1184
1185
1185
>>> transform = HueTransform(0.4)
1186
1186
>>> fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
1187
- >>> fake_img = transform(fake_img) # type: ignore[call-overload]
1187
+ >>> fake_img = transform(fake_img)
1188
1188
>>> print(fake_img.size)
1189
1189
(224, 224)
1190
1190
@@ -1239,7 +1239,7 @@ class ColorJitter(BaseTransform[_InputT, _RetT]):
1239
1239
1240
1240
>>> transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
1241
1241
>>> fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
1242
- >>> fake_img = transform(fake_img) # type: ignore[call-overload]
1242
+ >>> fake_img = transform(fake_img)
1243
1243
>>> print(fake_img.size)
1244
1244
(224, 224)
1245
1245
@@ -1480,7 +1480,7 @@ class Pad(BaseTransform[_InputT, _RetT]):
1480
1480
1481
1481
>>> transform = Pad(2)
1482
1482
>>> fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
1483
- >>> fake_img = transform(fake_img) # type: ignore[call-overload]
1483
+ >>> fake_img = transform(fake_img)
1484
1484
>>> print(fake_img.size)
1485
1485
(228, 228)
1486
1486
"""
@@ -1778,7 +1778,7 @@ class RandomRotation(BaseTransform[_InputT, _RetT]):
1778
1778
1779
1779
>>> transform = RandomRotation(90)
1780
1780
>>> fake_img = Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8))
1781
- >>> fake_img = transform(fake_img) # type: ignore[call-overload]
1781
+ >>> fake_img = transform(fake_img)
1782
1782
>>> print(fake_img.size)
1783
1783
(150, 200)
1784
1784
"""
@@ -2012,7 +2012,7 @@ class Grayscale(BaseTransform[_InputT, _RetT]):
2012
2012
2013
2013
>>> transform = Grayscale()
2014
2014
>>> fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
2015
- >>> fake_img = transform(fake_img) # type: ignore[call-overload]
2015
+ >>> fake_img = transform(fake_img)
2016
2016
>>> print(np.array(fake_img).shape)
2017
2017
(224, 224)
2018
2018
"""
0 commit comments