|
| 1 | +# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +import os |
| 15 | +import random |
| 16 | +import unittest |
| 17 | +from dataclasses import dataclass |
| 18 | + |
| 19 | +import numpy as np |
| 20 | + |
| 21 | +os.environ["FLAGS_profile_optimizer_details_steps"] = "1" |
| 22 | +import paddle |
| 23 | +import paddle.distributed as dist |
| 24 | +from paddle import nn |
| 25 | +from paddle.distributed import fleet |
| 26 | +from paddle.nn import Layer |
| 27 | + |
| 28 | +from paddlefleet.pipeline_parallel import ( |
| 29 | + LayerDesc, |
| 30 | + PipelineLayer, |
| 31 | + PipelineParallel, |
| 32 | + SharedLayerDesc, |
| 33 | +) |
| 34 | +from paddlefleet.spec_utils import LayerSpec, build_layer |
| 35 | + |
| 36 | + |
| 37 | +def set_random_seed(seed, dp_id, rank_id): |
| 38 | + """Set random seed for reproducibility.""" |
| 39 | + random.seed(seed) |
| 40 | + np.random.seed(seed + dp_id) |
| 41 | + paddle.seed(seed + dp_id) |
| 42 | + |
| 43 | + |
| 44 | +batch_size = 8 |
| 45 | +micro_batch_size = 2 |
| 46 | +vocab_size = 128 |
| 47 | +hidden_size = 16 |
| 48 | + |
| 49 | + |
| 50 | +class SimpleNetBase(Layer): |
| 51 | + def __init__(self): |
| 52 | + super().__init__() |
| 53 | + self.word_embeddings = nn.Embedding(vocab_size, hidden_size) |
| 54 | + |
| 55 | + self.softmax_weight = self.create_parameter( |
| 56 | + shape=[hidden_size, vocab_size] |
| 57 | + ) |
| 58 | + self.softmax_bias = self.create_parameter( |
| 59 | + shape=[vocab_size], is_bias=False |
| 60 | + ) |
| 61 | + |
| 62 | + def forward(self, x1, x2, y1): |
| 63 | + x_emb = self.word_embeddings(x1) |
| 64 | + fc = paddle.matmul(x_emb, self.softmax_weight) |
| 65 | + fc = paddle.add(fc, self.softmax_bias) |
| 66 | + projection = paddle.reshape(fc, shape=[-1, vocab_size]) |
| 67 | + |
| 68 | + projection = paddle.matmul(projection, self.word_embeddings.weight) |
| 69 | + |
| 70 | + loss = paddle.nn.functional.softmax_with_cross_entropy( |
| 71 | + logits=projection, label=y1, soft_label=False |
| 72 | + ) |
| 73 | + return loss.mean() |
| 74 | + |
| 75 | + |
| 76 | +class EmbeddingPipe(Layer): |
| 77 | + def __init__(self): |
| 78 | + super().__init__() |
| 79 | + self.word_embeddings = nn.Embedding(vocab_size, hidden_size) |
| 80 | + |
| 81 | + @property |
| 82 | + def embedding_weight(self): |
| 83 | + return self.word_embeddings.weight |
| 84 | + |
| 85 | + def forward(self, args): |
| 86 | + x1, x2 = args |
| 87 | + x_emb = self.word_embeddings(x1) |
| 88 | + return x_emb, x2 |
| 89 | + |
| 90 | + |
| 91 | +class MatmulNet(Layer): |
| 92 | + def __init__(self): |
| 93 | + super().__init__() |
| 94 | + self.softmax_weight = self.create_parameter( |
| 95 | + shape=[hidden_size, vocab_size] |
| 96 | + ) |
| 97 | + |
| 98 | + def forward(self, args): |
| 99 | + x1, x2 = args |
| 100 | + fc = paddle.matmul(x1, self.softmax_weight) |
| 101 | + |
| 102 | + return fc, x2 |
| 103 | + |
| 104 | + |
| 105 | +class BiasNet(Layer): |
| 106 | + def __init__(self): |
| 107 | + super().__init__() |
| 108 | + self.softmax_bias = self.create_parameter(shape=[vocab_size]) |
| 109 | + |
| 110 | + def forward(self, args): |
| 111 | + fc, x2 = args |
| 112 | + fc = paddle.add(fc, self.softmax_bias) |
| 113 | + projection = paddle.reshape(fc, shape=[-1, vocab_size]) |
| 114 | + return projection, x2 |
| 115 | + |
| 116 | + |
| 117 | +class LossNet(Layer): |
| 118 | + def __init__(self): |
| 119 | + super().__init__() |
| 120 | + |
| 121 | + def forward(self, args, y1): |
| 122 | + projection = args |
| 123 | + loss = paddle.nn.functional.softmax_with_cross_entropy( |
| 124 | + logits=projection, label=y1[0], soft_label=False |
| 125 | + ) |
| 126 | + return loss.mean() |
| 127 | + |
| 128 | + |
| 129 | +@dataclass |
| 130 | +class SimpleNetSpec: |
| 131 | + word_embeddings: LayerSpec |
| 132 | + matmul_net: LayerSpec |
| 133 | + bias_net: LayerSpec |
| 134 | + |
| 135 | + |
| 136 | +class SimpleNet(PipelineLayer): |
| 137 | + def __init__(self, sublayers_spec: SimpleNetSpec, **kwargs): |
| 138 | + self.layers = SimpleNet.get_layer_desc_list(sublayers_spec) |
| 139 | + |
| 140 | + super().__init__(layers=self.layers, **kwargs) |
| 141 | + |
| 142 | + @staticmethod |
| 143 | + def get_layer_desc_list(spec: SimpleNetSpec): |
| 144 | + def _logits_helper(embedding, output): |
| 145 | + return paddle.matmul(output[0], embedding.embedding_weight) |
| 146 | + |
| 147 | + layers = [ |
| 148 | + SharedLayerDesc( |
| 149 | + "embed", |
| 150 | + spec.word_embeddings, |
| 151 | + shared_weight_attr="embedding_weight", |
| 152 | + ), |
| 153 | + LayerDesc(spec.matmul_net), |
| 154 | + LayerDesc(spec.bias_net), |
| 155 | + SharedLayerDesc( |
| 156 | + "embed", |
| 157 | + spec.word_embeddings, |
| 158 | + forward_func=_logits_helper, |
| 159 | + shared_weight_attr="embedding_weight", |
| 160 | + ), |
| 161 | + ] |
| 162 | + return layers |
| 163 | + |
| 164 | + |
| 165 | +def get_simple_net_spec(): |
| 166 | + spec = LayerSpec( |
| 167 | + layer=SimpleNet, |
| 168 | + sublayers_spec=SimpleNetSpec( |
| 169 | + word_embeddings=LayerSpec(layer=EmbeddingPipe), |
| 170 | + matmul_net=LayerSpec(layer=MatmulNet), |
| 171 | + bias_net=LayerSpec(layer=BiasNet), |
| 172 | + ), |
| 173 | + extra_kwargs={ |
| 174 | + "loss_fn": LossNet(), |
| 175 | + }, |
| 176 | + ) |
| 177 | + return spec |
| 178 | + |
| 179 | + |
| 180 | +class TestDistEmbeddingTraining(unittest.TestCase): |
| 181 | + def setUp(self): |
| 182 | + strategy = fleet.DistributedStrategy() |
| 183 | + self.model_parallel_size = 1 |
| 184 | + self.data_parallel_size = 1 |
| 185 | + self.pipeline_parallel_size = 2 |
| 186 | + strategy.hybrid_configs = { |
| 187 | + "dp_degree": self.data_parallel_size, |
| 188 | + "mp_degree": self.model_parallel_size, |
| 189 | + "pp_degree": self.pipeline_parallel_size, |
| 190 | + } |
| 191 | + strategy.pipeline_configs = { |
| 192 | + "accumulate_steps": batch_size // micro_batch_size, |
| 193 | + "micro_batch_size": micro_batch_size, |
| 194 | + } |
| 195 | + strategy.hybrid_configs["pp_configs"].clear_every_step_cache = True |
| 196 | + self.strategy = strategy |
| 197 | + |
| 198 | + fleet.init(is_collective=True, strategy=strategy) |
| 199 | + |
| 200 | + def test_pp_model(self): |
| 201 | + hcg = fleet.get_hybrid_communicate_group() |
| 202 | + dp_id = hcg.get_data_parallel_rank() |
| 203 | + pp_id = hcg.get_stage_id() |
| 204 | + rank_id = dist.get_rank() |
| 205 | + set_random_seed(1024, dp_id, rank_id) |
| 206 | + |
| 207 | + # construct model a |
| 208 | + model_a = SimpleNetBase() |
| 209 | + scheduler_a = paddle.optimizer.lr.PiecewiseDecay( |
| 210 | + boundaries=[2, 3, 4], values=[0.01, 0.02, 0.03, 0.04], verbose=True |
| 211 | + ) |
| 212 | + optimizer_a = paddle.optimizer.SGD( |
| 213 | + learning_rate=scheduler_a, parameters=model_a.parameters() |
| 214 | + ) |
| 215 | + |
| 216 | + simple_net_spec = get_simple_net_spec() |
| 217 | + model_b = build_layer(simple_net_spec, topology=hcg.topology()) |
| 218 | + |
| 219 | + scheduler_b = paddle.optimizer.lr.PiecewiseDecay( |
| 220 | + boundaries=[2, 3, 4], values=[0.01, 0.02, 0.03, 0.04], verbose=True |
| 221 | + ) |
| 222 | + optimizer_b = paddle.optimizer.SGD( |
| 223 | + learning_rate=scheduler_b, parameters=model_b.parameters() |
| 224 | + ) |
| 225 | + model_b = PipelineParallel(model_b, hcg, self.strategy) |
| 226 | + optimizer_b = fleet.distributed_optimizer(optimizer_b) |
| 227 | + |
| 228 | + parameters = [] |
| 229 | + for param in model_a.parameters(): |
| 230 | + parameters.append(param.numpy()) |
| 231 | + |
| 232 | + model_b_params = model_b.parameters() |
| 233 | + |
| 234 | + if pp_id == 0: |
| 235 | + model_b_params[0].set_value(parameters[2]) |
| 236 | + model_b_params[1].set_value(parameters[0]) |
| 237 | + |
| 238 | + else: |
| 239 | + model_b_params[0].set_value(parameters[2]) |
| 240 | + model_b_params[1].set_value(parameters[1]) |
| 241 | + |
| 242 | + # enable this test when simple pp is ready |
| 243 | + return |
| 244 | + |
| 245 | + for step in range(5): |
| 246 | + x1_data = np.random.randint(0, vocab_size, size=[batch_size, 1]) |
| 247 | + x2_data = np.random.randint(0, vocab_size, size=[batch_size, 1]) |
| 248 | + y1_data = np.random.randint(0, hidden_size, size=[batch_size, 1]) |
| 249 | + |
| 250 | + x1 = paddle.to_tensor(x1_data) |
| 251 | + x2 = paddle.to_tensor(x2_data) |
| 252 | + y1 = paddle.to_tensor(y1_data) |
| 253 | + |
| 254 | + x1.stop_gradient = True |
| 255 | + x2.stop_gradient = True |
| 256 | + y1.stop_gradient = True |
| 257 | + |
| 258 | + loss_a = model_a(x1, x2, y1) |
| 259 | + loss_a.backward() |
| 260 | + |
| 261 | + optimizer_a.step() |
| 262 | + optimizer_a.clear_grad() |
| 263 | + scheduler_a.step() |
| 264 | + |
| 265 | + loss_b = model_b.train_batch( |
| 266 | + [(x1, x2), (y1,)], optimizer_b, scheduler_b |
| 267 | + ) |
| 268 | + |
| 269 | + print("loss", loss_a.numpy(), loss_b.numpy()) |
| 270 | + np.testing.assert_allclose(loss_a.numpy(), loss_b.numpy()) |
| 271 | + |
| 272 | + |
| 273 | +class TestDistEmbeddingTrainingWithSync(TestDistEmbeddingTraining): |
| 274 | + def setUp(self): |
| 275 | + strategy = fleet.DistributedStrategy() |
| 276 | + self.model_parallel_size = 1 |
| 277 | + self.data_parallel_size = 1 |
| 278 | + self.pipeline_parallel_size = 2 |
| 279 | + strategy.hybrid_configs = { |
| 280 | + "dp_degree": self.data_parallel_size, |
| 281 | + "mp_degree": self.model_parallel_size, |
| 282 | + "pp_degree": self.pipeline_parallel_size, |
| 283 | + } |
| 284 | + strategy.pipeline_configs = { |
| 285 | + "accumulate_steps": batch_size // micro_batch_size, |
| 286 | + "micro_batch_size": micro_batch_size, |
| 287 | + } |
| 288 | + strategy.hybrid_configs["pp_configs"].clear_every_step_cache = True |
| 289 | + strategy.hybrid_configs["pp_configs"].sync_moment = True |
| 290 | + strategy.hybrid_configs["pp_configs"].sync_param = True |
| 291 | + self.strategy = strategy |
| 292 | + |
| 293 | + fleet.init(is_collective=True, strategy=strategy) |
| 294 | + |
| 295 | + def test_pp_model(self): |
| 296 | + super().test_pp_model() |
| 297 | + |
| 298 | + |
| 299 | +if __name__ == "__main__": |
| 300 | + unittest.main() |
0 commit comments