-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathginet.py
304 lines (249 loc) · 11.1 KB
/
ginet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from paddle.nn import functional as F
from paddleseg.utils import utils
from paddleseg.models import layers
from paddleseg.cvlibs import manager
@manager.MODELS.add_component
class GINet(nn.Layer):
"""
The GINet implementation based on PaddlePaddle.
The original article refers to
Wu, Tianyi, Yu Lu, Yu Zhu, Chuang Zhang, Ming Wu, Zhanyu Ma, and Guodong Guo. "GINet: Graph interaction network for scene parsing." In European Conference on Computer Vision, pp. 34-51. Springer, Cham, 2020.
(https://arxiv.org/pdf/2009.06160).
Args:
num_classes (int): The unique number of target classes.
backbone (Paddle.nn.Layer): Backbone network.
backbone_indices (tuple, optional): Values in the tuple indicate the indices of output of backbone.
enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss.
If true, auxiliary loss will be added after LearningToDownsample module. Default: False.
align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature
is even, e.g. 1024x512, otherwise it is True, e.g. 769x769.. Default: False.
jpu (bool, optional)): whether to use jpu unit in the base forward. Default:True.
pretrained (str, optional): The path or url of pretrained model. Default: None.
"""
def __init__(self,
num_classes,
backbone,
backbone_indices=[0, 1, 2, 3],
enable_auxiliary_loss=True,
align_corners=True,
jpu=True,
pretrained=None):
super().__init__()
self.nclass = num_classes
self.aux = enable_auxiliary_loss
self.jpu = jpu
self.backbone = backbone
self.backbone_indices = backbone_indices
self.align_corners = align_corners
self.jpu = layers.JPU([512, 1024, 2048], width=512) if jpu else None
self.head = GIHead(in_channels=2048, nclass=num_classes)
if self.aux:
self.auxlayer = layers.AuxLayer(1024,
1024 // 4,
num_classes,
bias_attr=False)
self.pretrained = pretrained
self.init_weight()
def base_forward(self, x):
feat_list = self.backbone(x)
c1, c2, c3, c4 = [feat_list[i] for i in self.backbone_indices]
if self.jpu:
return self.jpu(c1, c2, c3, c4)
else:
return c1, c2, c3, c4
def forward(self, x):
_, _, h, w = x.shape
_, _, c3, c4 = self.base_forward(x)
logit_list = []
x, _ = self.head(c4)
logit_list.append(x)
if self.aux:
auxout = self.auxlayer(c3)
logit_list.append(auxout)
return [
F.interpolate(logit, [h, w],
mode='bilinear',
align_corners=self.align_corners)
for logit in logit_list
]
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
class GIHead(nn.Layer):
"""The Graph Interaction Network head."""
def __init__(self, in_channels, nclass):
super().__init__()
self.nclass = nclass
inter_channels = in_channels // 4
self.inp = paddle.zeros(shape=(nclass, 300), dtype='float32')
self.inp = paddle.create_parameter(
shape=self.inp.shape,
dtype=str(self.inp.numpy().dtype),
default_initializer=paddle.nn.initializer.Assign(self.inp))
self.inp.stop_gradient = True
self.fc1 = nn.Sequential(nn.Linear(300, 128), nn.BatchNorm1D(128),
nn.ReLU())
self.fc2 = nn.Sequential(nn.Linear(128, 256), nn.BatchNorm1D(256),
nn.ReLU())
self.conv5 = layers.ConvBNReLU(in_channels,
inter_channels,
3,
padding=1,
bias_attr=False,
stride=1)
self.gloru = GlobalReasonUnit(in_channels=inter_channels,
num_state=256,
num_node=84,
nclass=nclass)
self.conv6 = nn.Sequential(nn.Dropout(0.1),
nn.Conv2D(inter_channels, nclass, 1))
def forward(self, x):
B, C, H, W = x.shape
inp = self.inp
inp = self.fc1(inp)
inp = self.fc2(inp).unsqueeze(axis=0).transpose((0, 2, 1))\
.expand((B, 256, self.nclass))
out = self.conv5(x)
out, se_out = self.gloru(out, inp)
out = self.conv6(out)
return out, se_out
class GlobalReasonUnit(nn.Layer):
"""
The original paper refers to:
Chen, Yunpeng, et al. "Graph-Based Global Reasoning Networks" (https://arxiv.org/abs/1811.12814)
"""
def __init__(self, in_channels, num_state=256, num_node=84, nclass=59):
super().__init__()
self.num_state = num_state
self.conv_theta = nn.Conv2D(in_channels,
num_node,
kernel_size=1,
stride=1,
padding=0)
self.conv_phi = nn.Conv2D(in_channels,
num_state,
kernel_size=1,
stride=1,
padding=0)
self.graph = GraphLayer(num_state, num_node, nclass)
self.extend_dim = nn.Conv2D(num_state,
in_channels,
kernel_size=1,
bias_attr=False)
self.bn = layers.SyncBatchNorm(in_channels)
def forward(self, x, inp):
B = self.conv_theta(x)
sizeB = B.shape
B = paddle.flatten(B, 2, 3)
sizex = paddle.shape(x)
x_reduce = self.conv_phi(x)
x_reduce = paddle.flatten(x_reduce, 2, 3).transpose((0, 2, 1))
V = paddle.bmm(B, x_reduce).transpose((0, 2, 1))
V = paddle.divide(V, (sizex[2] * sizex[3]).astype('float32'))
class_node, new_V = self.graph(inp, V)
D = B.transpose((0, 2, 1))
Y = paddle.bmm(D, new_V.transpose((0, 2, 1)))
Y = Y.transpose((0, 2, 1)).reshape((sizex[0], self.num_state, \
sizex[2], -1))
Y = self.extend_dim(Y)
Y = self.bn(Y)
out = Y + x
return out, class_node
class GraphLayer(nn.Layer):
def __init__(self, num_state, num_node, num_class):
super().__init__()
self.vis_gcn = GCN(num_state, num_node)
self.word_gcn = GCN(num_state, num_class)
self.transfer = GraphTransfer(num_state)
self.gamma_vis = paddle.zeros([num_node])
self.gamma_word = paddle.zeros([num_class])
self.gamma_vis = paddle.create_parameter(
shape=self.gamma_vis.shape,
dtype=str(self.gamma_vis.numpy().dtype),
default_initializer=paddle.nn.initializer.Assign(self.gamma_vis))
self.gamma_word = paddle.create_parameter(
shape=self.gamma_word.shape,
dtype=str(self.gamma_word.numpy().dtype),
default_initializer=paddle.nn.initializer.Assign(self.gamma_word))
def forward(self, inp, vis_node):
inp = self.word_gcn(inp)
new_V = self.vis_gcn(vis_node)
class_node, vis_node = self.transfer(inp, new_V)
class_node = self.gamma_word * inp + class_node
new_V = self.gamma_vis * vis_node + new_V
return class_node, new_V
class GCN(nn.Layer):
def __init__(self, num_state=128, num_node=64, bias=False):
super().__init__()
self.conv1 = nn.Conv1D(
num_node,
num_node,
kernel_size=1,
padding=0,
stride=1,
groups=1,
)
self.relu = nn.ReLU()
self.conv2 = nn.Conv1D(num_state,
num_state,
kernel_size=1,
padding=0,
stride=1,
groups=1,
bias_attr=bias)
def forward(self, x):
h = self.conv1(x.transpose((0, 2, 1))).transpose((0, 2, 1))
h = h + x
h = self.relu(h)
h = self.conv2(h)
return h
class GraphTransfer(nn.Layer):
"""Transfer vis graph to class node, transfer class node to vis feature"""
def __init__(self, in_dim):
super().__init__()
self.channle_in = in_dim
self.query_conv = nn.Conv1D(in_channels=in_dim,
out_channels=in_dim // 2,
kernel_size=1)
self.key_conv = nn.Conv1D(in_channels=in_dim,
out_channels=in_dim // 2,
kernel_size=1)
self.value_conv_vis = nn.Conv1D(in_channels=in_dim,
out_channels=in_dim,
kernel_size=1)
self.value_conv_word = nn.Conv1D(in_channels=in_dim,
out_channels=in_dim,
kernel_size=1)
self.softmax_vis = nn.Softmax(axis=-1)
self.softmax_word = nn.Softmax(axis=-2)
def forward(self, word, vis_node):
m_batchsize, C, Nc = word.shape
m_batchsize, C, Nn = vis_node.shape
proj_query = self.query_conv(word).reshape((m_batchsize, -1, Nc))\
.transpose((0, 2, 1))
proj_key = self.key_conv(vis_node).reshape((m_batchsize, -1, Nn))
energy = paddle.bmm(proj_query, proj_key)
attention_vis = self.softmax_vis(energy).transpose((0, 2, 1))
attention_word = self.softmax_word(energy)
proj_value_vis = self.value_conv_vis(vis_node).reshape(
(m_batchsize, -1, Nn))
proj_value_word = self.value_conv_word(word).reshape(
(m_batchsize, -1, Nc))
class_out = paddle.bmm(proj_value_vis, attention_vis)
node_out = paddle.bmm(proj_value_word, attention_word)
return class_out, node_out