-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathmaskformer.py
714 lines (600 loc) · 26.1 KB
/
maskformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
# copyright (c) 2023 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This implementation refers to: https://github.com/facebookresearch/MaskFormer/tree/main/mask_former/modeling
import math
import copy
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.models import layers
from paddleseg.cvlibs import manager, param_init
from paddleseg.utils import utils
from paddleseg.core.train import check_logits_losses
@manager.MODELS.add_component
class MaskFormer(nn.Layer):
"""
The MaskFormer model implement on PaddlePaddle.
The original article please refer to :
Cheng, Bowen, Alex Schwing, and Alexander Kirillov. "Per-pixel classification is not all you need for semantic segmentation." Advances in Neural Information Processing Systems 34 (2021): 17864-17875.
(https://github.com/facebookresearch/MaskFormer)
Args:
num_classes(int): The number of classes that you want the model to classify.
backbone(nn.Layer): The backbone module defined in the paddleseg backbones.
sem_seg_postprocess_before_inference(bool): If True, do result postprocess before inference.
pretrained(str): The path to the pretrained model of MaskFormer.
"""
def __init__(self,
num_classes,
backbone,
sem_seg_postprocess_before_inference=False,
pretrained=None):
super(MaskFormer, self).__init__()
self.num_classes = num_classes
self.backbone = backbone
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
self.seghead = MaskFormerHead(backbone.output_shape(), num_classes)
self.pretrained = pretrained
self.init_weight()
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
def semantic_inference(self, mask_cls, mask_pred):
mask_cls = F.softmax(mask_cls)[..., :-1]
mask_pred = F.sigmoid(mask_pred)
semseg = paddle.einsum("qc,qhw->chw", mask_cls, mask_pred)
return semseg
def forward(self, x):
features = self.backbone(x)
outputs = self.seghead(features)
if self.training:
return [outputs]
else:
mask_cls_results = outputs["pred_logits"] # [2, 100, 151]
mask_pred_results = outputs["pred_masks"] # [2, 100, 512, 512]
mask_pred_results = F.interpolate(
mask_pred_results,
size=(x.shape[-2], x.shape[-1]),
mode="bilinear",
align_corners=False, )
processed_results = []
for mask_cls_result, mask_pred_result in zip(mask_cls_results,
mask_pred_results):
image_size = x.shape[-2:]
if self.sem_seg_postprocess_before_inference:
mask_pred_result = self.sem_seg_postprocess(
mask_pred_result, image_size, image_size[0],
image_size[1])
r = self.semantic_inference(mask_cls_result, mask_pred_result)
if not self.sem_seg_postprocess_before_inference:
r = self.sem_seg_postprocess(r, image_size, image_size[0],
image_size[1])
processed_results.append({"sem_seg": r})
r = r[None, ...]
return [r]
def sem_seg_postprocess(self, result, img_size, output_height,
output_width):
"""
Return semantic segmentation predictions in the original resolution.
The input images are often resized when entering semantic segmentor. Moreover, in same
cases, they also padded inside segmentor to be divisible by maximum network stride.
As a result, we often need the predictions of the segmentor in a different
resolution from its inputs.
Args:
result (Tensor): semantic segmentation prediction logits. A tensor of shape (C, H, W),
where C is the number of classes, and H, W are the height and width of the prediction.
img_size (tuple): image size that segmentor is taking as input.
output_height, output_width: the desired output resolution.
Returns:
semantic segmentation prediction (Tensor): A tensor of the shape
(C, output_height, output_width) that contains per-pixel soft predictions.
"""
result = paddle.unsqueeze(result[:, :img_size[0], :img_size[1]], axis=0)
result = F.interpolate(
result,
size=(output_height, output_width),
mode="bilinear",
align_corners=False)[0]
return result
def loss_computation(self, logits_list, losses, data):
check_logits_losses(logits_list, losses)
loss_list = []
for i in range(len(logits_list)):
logits = logits_list[i]
loss_i = losses['types'][i]
coef_i = losses['coef'][i]
loss_list.append(coef_i * loss_i(logits, data['instances']))
return loss_list
class BasePixelDecoder(nn.Layer):
def __init__(self, input_shape, conv_dim=256, norm="GN", mask_dim=256):
super().__init__()
input_shape = sorted(input_shape.items(), key=lambda x: x[1]['stride'])
self.in_features = [k for k, v in input_shape] # "res2" to "res5"
feature_channels = [v['channels'] for k, v in input_shape]
self.lateral_convs, self.output_convs = nn.LayerList(), nn.LayerList()
use_bias = norm == ''
for idx, in_channels in enumerate(feature_channels):
if idx == len(self.in_features) - 1:
output_conv = layers.ConvNormAct(
in_channels,
conv_dim,
kernel_size=3,
bias_attr=use_bias,
norm=nn.GroupNorm(
num_groups=32, num_channels=conv_dim),
act_type='relu')
self.output_convs.append(output_conv)
self.lateral_convs.append(None)
for layer in output_conv.sublayers():
if hasattr(layer, "weight"):
param_init.kaiming_uniform(
layer.weight,
negative_slope=1,
nonlinearity='leaky_relu')
if getattr(layer, 'bias', None) is not None:
param_init.constant_init(layer.bias, value=0)
else:
lateral_norm = nn.GroupNorm(
num_groups=32, num_channels=conv_dim)
output_norm = nn.GroupNorm(num_groups=32, num_channels=conv_dim)
lateral_conv = layers.ConvNormAct(
in_channels,
conv_dim,
kernel_size=1,
bias_attr=False,
norm=lateral_norm)
output_conv = layers.ConvNormAct(
conv_dim,
conv_dim,
kernel_size=3,
stride=1,
padding=1,
bias_attr=use_bias,
norm=output_norm,
act_type='relu')
self.lateral_convs.append(lateral_conv)
self.output_convs.append(output_conv)
for layer in output_conv.sublayers() + lateral_conv.sublayers():
if hasattr(layer, "weight"):
param_init.kaiming_uniform(
layer.weight,
negative_slope=1,
nonlinearity='leaky_relu')
if getattr(layer, 'bias', None) is not None:
param_init.constant_init(layer.bias, value=0)
self.lateral_convs = self.lateral_convs[::-1]
self.output_convs = self.output_convs[::-1]
self.mask_features = layers.ConvNormAct(
conv_dim, mask_dim, kernel_size=3, stride=1, padding=1)
for layer in self.mask_features.sublayers():
if hasattr(layer, "weight"):
param_init.kaiming_uniform(
layer.weight, negative_slope=1, nonlinearity='leaky_relu')
if getattr(layer, 'bias', None) is not None:
param_init.constant_init(layer.bias, value=0)
def forward(self, features):
for idx, f in enumerate(self.in_features[::-1]):
x = features[f]
lateral_conv = self.lateral_convs[idx]
if lateral_conv is None:
y = self.output_convs[idx](x)
else:
cur_fpn = self.lateral_convs[idx](x)
y = cur_fpn + F.interpolate(
y, size=cur_fpn.shape[-2:], mode='nearest')
y = self.output_convs[idx](y)
return self.mask_features(y), None
class PositionEmbeddingSine(nn.Layer):
def __init__(self,
num_pos_feats=64,
temperature=10000,
normalize=False,
scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be true is scale is not None")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, x, mask=None):
if mask is None:
mask = paddle.zeros(
shape=(x.shape[0], x.shape[2], x.shape[3]), dtype='bool')
not_mask = ~mask
y_embed = paddle.cumsum(not_mask, axis=1, dtype='float32')
x_embed = paddle.cumsum(not_mask, axis=2, dtype='float32')
if self.normalize:
y_embed = y_embed / (y_embed[:, -1:, :] + 1e-6) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + 1e-6) * self.scale
dim_t = paddle.arange(self.num_pos_feats, dtype='float32')
dim_t = paddle.cast(dim_t, dtype='int64')
tmp = paddle.ones_like(dim_t) * 2
dim_t = self.temperature**(2 * paddle.floor_divide(dim_t, tmp) /
self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = paddle.flatten(
paddle.stack(
(paddle.sin(pos_x[:, :, :, 0::2]),
paddle.cos(pos_x[:, :, :, 1::2])),
axis=4),
start_axis=3)
pos_y = paddle.flatten(
paddle.stack(
(paddle.sin(pos_y[:, :, :, 0::2]),
paddle.cos(pos_y[:, :, :, 1::2])),
axis=4),
start_axis=3)
pos = paddle.transpose(
paddle.concat(
(pos_y, pos_x), axis=3), perm=(0, 3, 1, 2))
return pos
class EncoderLayer(nn.Layer):
"""
The layer to compose the transformer encoder.
Args:
d_model(int): The input feature's channels.
nhead(int): the number of head for MHSA.
dim_feedforward(int): The internal channels of linear layer.
dropout(int): the dropout probability.
activation(str): the kind of activation that used.
"""
def __init__(self,
d_model,
nhead,
dim_feedforward=2048,
dropout=0.1,
activation="relu"):
super().__init__()
self.self_attn = nn.MultiHeadAttention(d_model, nhead, dropout)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = nn.ReLU()
self.init_weight()
def with_pos_embed(self, tensor, pos=None):
return tensor if pos is None else tensor + pos
def init_weight(self):
param_init.multihead_fill(self.self_attn, True)
param_init.th_linear_fill(self.linear1)
param_init.th_linear_fill(self.linear2)
def forward(self, src, src_mask, src_key_padding_mask, pos):
q = k = self.with_pos_embed(src, pos)
if src_key_padding_mask is not None:
raise ValueError(
"The multihead attention does not support key_padding mask, but got src_key_padding_mask is not None"
)
attn = self.self_attn(q, k, value=src, attn_mask=src_mask)[0]
src += self.dropout(attn)
src = self.norm1(src)
attn = self.linear2(self.dropout(self.activation(self.linear1(src))))
src += self.dropout2(attn)
src = self.norm2(src)
return src
class TransformerEncoder(nn.Layer):
"""
The transformer encoder.
Args:
encoder_layer(nn.Layer): The base layer to compose the encoder.
num_layers(int): How many layers is used in the encoder.
norm(str): the kind of normalization that used before output.
"""
def __init__(self, encoder_layer, num_layers, norm=None):
super().__init__()
self.layers = nn.LayerList()
for i in range(num_layers):
self.layers.append(encoder_layer)
self.norm = norm
def forward(self, src, mask=None, src_key_padding_mask=None, pos=None):
output = src
for layer in self.layers:
# if pos is not none, all the encoder layer will have the position embedding
output = layer(
output,
src_mask=mask,
src_key_padding_mask=src_key_padding_mask,
pos=pos)
if self.norm is not None:
output = self.norm(output)
return output
class DecoderLayer(nn.Layer):
"""
The layer to compose the transformer decoder.
Args:
d_model(int): The input feature's channels.
nhead(int): the number of head for MHSA.
dim_feedforward(int): The internal channels of linear layer.
dropout(int): the dropout probability.
activation(str): the kind of activation that used.
"""
def __init__(self,
d_model,
nhead,
dim_feedforward=2048,
dropout=0.1,
activation="relu"):
super().__init__()
self.self_attn = nn.MultiHeadAttention(d_model, nhead, dropout)
self.multihead_attn = nn.MultiHeadAttention(
d_model, nhead, dropout=dropout)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = nn.ReLU()
def init_weight(self):
param_init.multihead_fill(self.self_attn, True)
param_init.multihead_fill(self.multihead_attn, True)
param_init.th_linear_fill(self.linear1)
param_init.th_linear_fill(self.linear2)
def with_pos_embed(self, tensor, pos=None):
return tensor if pos is None else tensor + pos
def forward(self,
tgt,
memory,
tgt_mask=None,
memory_mask=None,
tgt_key_padding_mask=None,
memory_key_padding_mask=None,
pos=None,
query_pos=None):
if tgt_key_padding_mask or memory_key_padding_mask:
raise ValueError(
"The multihead attention does not support key_padding_mask")
q = k = self.with_pos_embed(tgt, query_pos).transpose(perm=(
1, 0, 2)) # [2, 100, 256]
tgt = tgt.transpose(perm=(1, 0, 2))
attn = self.self_attn(
q, k, value=tgt,
attn_mask=tgt_mask).transpose(perm=(1, 0, 2)) # [100, 2, 256]
tgt = tgt.transpose(perm=(1, 0, 2)) # [100, 2, 256]
tgt += self.dropout1(attn)
tgt = self.norm1(tgt) # [100, 2, 256]
q = self.with_pos_embed(tgt, query_pos).transpose(perm=(1, 0, 2))
k = self.with_pos_embed(memory, pos).transpose(perm=(1, 0, 2))
v = memory.transpose(perm=(1, 0, 2))
attn = self.multihead_attn(
query=q, key=k, value=v,
attn_mask=memory_mask).transpose(perm=(1, 0, 2))
tgt += self.dropout2(attn)
tgt = self.norm2(tgt) # [100, 2, 256]
attn = self.linear2(
self.dropout(self.activation(self.linear1(tgt)))) # [100, 2, 256]
tgt += self.dropout3(attn)
tgt = self.norm3(tgt)
return tgt
class TransformerDecoder(nn.Layer):
"""
The transformer decoder.
Args:
encoder_layer(nn.Layer): The base layer to compose the decoder.
num_layers(int): How many layers is used in the decoder.
norm(str): the kind of normalization that used before output.
return_intermediate(bool): Whether to output the intermediate feature.
"""
def __init__(self,
decoder_layer,
num_layers,
norm=None,
return_intermediate=True):
super().__init__()
self.decoder_list = nn.LayerList()
for i in range(num_layers):
self.decoder_list.append(copy.deepcopy(decoder_layer))
self.norm = norm
self.return_intermediate = return_intermediate
def forward(self,
tgt,
memory,
tgt_mask=None,
memory_mask=None,
tgt_key_padding_mask=None,
memory_key_padding_mask=None,
pos=None,
query_pos=None):
output = tgt
intermediate = []
for layer in self.decoder_list:
output = layer(
output,
memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
pos=pos,
query_pos=query_pos)
if self.return_intermediate:
intermediate.append(self.norm(output))
if self.norm is not None:
output = self.norm(output)
if self.return_intermediate:
intermediate.pop()
intermediate.append(output)
if self.return_intermediate:
return paddle.stack(intermediate)
return output.unsqueeze(0)
class Transformer(nn.Layer):
def __init__(self,
d_model=256,
nhead=8,
num_encoder_layers=0,
num_decoder_layers=6,
dim_feedforward=2048,
dropout=0.1,
activation="relu",
normalize_before=False,
return_intermediate_dec=True):
super().__init__()
self.d_model = d_model
self.nhead = nhead
encoder_layer = EncoderLayer(d_model, nhead, dim_feedforward, dropout,
activation)
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers,
encoder_norm)
decoder_layer = DecoderLayer(d_model, nhead, dim_feedforward, dropout,
activation)
decoder_norm = nn.LayerNorm(d_model)
self.decoder = TransformerDecoder(
decoder_layer,
num_decoder_layers,
decoder_norm,
return_intermediate=return_intermediate_dec)
self.init_weight()
def init_weight(self):
for name, p in self.named_parameters():
if len(p.shape) > 1 and ('attn' not in name):
param_init.xavier_uniform(p)
def forward(self, src, mask, query_embed, pos_embed):
# flatten NxCxHxW to HWxNxC
bs, c, h, w = src.shape
src = paddle.transpose(paddle.flatten(src, start_axis=2), (2, 0, 1))
pos_embed = paddle.transpose(
paddle.flatten(
pos_embed, start_axis=2), (2, 0, 1))
query_embed = paddle.stack([query_embed for i in range(bs)], axis=1)
if mask is not None:
mask = paddle.flatten(mask, start_axis=1)
tgt = paddle.zeros_like(query_embed) # No.querry, N, hdim [100, 2, 256]
memory = self.encoder(
src, src_key_padding_mask=mask,
pos=pos_embed) # HWxNxC memory = src
hs = self.decoder(
tgt,
memory,
memory_key_padding_mask=mask,
pos=pos_embed,
query_pos=query_embed)
return paddle.transpose(hs, (0, 2, 1, 3)), paddle.reshape(
paddle.transpose(memory, (1, 2, 0)), (bs, c, h, w))
class MLP(nn.Layer):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.LayerList(
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
self.init_weight()
def init_weight(self):
for layer in self.layers:
param_init.th_linear_fill(layer)
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
class TransformerPredictor(nn.Layer):
def __init__(self,
in_channels,
mask_classification,
num_classes=150,
hidden_dim=256,
num_queries=100,
nheads=8,
dropout=0.1,
dim_feedforward=2048,
enc_layers=0,
dec_layers=6,
pre_norm=False,
deep_supervision=True,
mask_dim=256,
enforce_input_project=False):
super().__init__()
self.mask_classification = mask_classification
self.pe_layer = PositionEmbeddingSine(hidden_dim // 2, normalize=True)
self.transformer = Transformer(
d_model=hidden_dim,
dropout=dropout,
nhead=nheads,
dim_feedforward=dim_feedforward,
num_encoder_layers=enc_layers,
num_decoder_layers=dec_layers,
normalize_before=pre_norm,
return_intermediate_dec=deep_supervision)
self.query_embed = nn.Embedding(num_queries, hidden_dim)
if in_channels != hidden_dim or enforce_input_project:
self.input_proj = nn.Conv2D(in_channels, hidden_dim, kernel_size=1)
if hasattr(self.input_proj, "weight"):
param_init.kaiming_uniform(
self.input_proj.weight,
negative_slope=1,
nonlinearity='leaky_relu')
if getattr(self.input_proj, 'bias', None) is not None:
param_init.constant_init(self.input_proj.bias, value=0)
else:
self.input_proj = nn.Sequential()
self.aux_loss = deep_supervision
if self.mask_classification:
self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
self.init_weight()
def init_weight(self, ):
param_init.th_linear_fill(self.class_embed)
param_init.normal_init(self.query_embed.weight, mean=0.0, std=1.0)
def forward(self, x, mask_features):
pos = self.pe_layer(x)
mask = None
hs, memory = self.transformer(
self.input_proj(x), mask, self.query_embed.weight, pos)
out = {}
if self.mask_classification:
outputs_class = self.class_embed(hs)
out["pred_logits"] = outputs_class[-1]
if self.aux_loss:
mask_embed = self.mask_embed(hs)
output_seg_masks = paddle.einsum("lbqc,bchw->lbqhw", mask_embed,
mask_features)
out["pred_masks"] = output_seg_masks[-1]
if self.mask_classification:
out['aux_outputs'] = [{
"pred_logits": a,
"pred_masks": b
} for a, b in zip(outputs_class[:-1], output_seg_masks[:-1])]
else:
out['aux_outputs'] = [{
"pred_masks": b
} for b in output_seg_masks[:-1]]
else:
mask_embed = self.mask_embed(hs[-1])
output_seg_masks = paddle.einsum("bqc,bchw->bqhw", mask_embed,
mask_features)
out["pred_masks"] = output_seg_masks
return out
class MaskFormerHead(nn.Layer):
def __init__(self, input_shape, num_classes, transformer_in_feature='res5'):
super(MaskFormerHead, self).__init__()
self.transformer_in_feature = transformer_in_feature
self.input_shape = input_shape
self.pixel_decoder = BasePixelDecoder(input_shape)
self.predictor = TransformerPredictor(
input_shape[transformer_in_feature]["channels"],
mask_classification=True,
num_classes=num_classes)
def forward(self, x):
mask_features, transformer_encoder_features = self.pixel_decoder(x)
predictions = self.predictor(x[self.transformer_in_feature],
mask_features)
return predictions