-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathpointrend.py
832 lines (745 loc) · 35.8 KB
/
pointrend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
from paddleseg.models import layers
from paddleseg.utils import utils
@manager.MODELS.add_component
class PointRend(nn.Layer):
"""
The SemanticFPN-PointRend implementation based on PaddlePaddle.
The original article refers to
Kirillov A, Wu Y, He K, et al. "PointRend: Image Segmentation As Rendering."
(https://arxiv.org/abs/1912.08193).
Args:
num_classes (int): The unique number of target classes.
backbone (Paddle.nn.Layer): Backbone network, currently support Resnet50/101.
backbone_indices (tuple, optional): Four values in the tuple indicate the indices of output of backbone.
fpn_inplanes (list, optional): Input channels list(the feature channels from backbone) for lateral_conv constraction in FPN. Default: [256, 512, 1024, 2048].
fpn_outplanes (int, optional): The output channels in FPN. Default: 256.
point_num_fcs (int, optional): Number of fc layers in the head in PointHead. Default: 3.
point_in_channels (list, optional): input channels of fc block in PointHead. Default: [256].
point_out_channels (int, optional): Fc block's output channels in PointHead. Default: 256.
point_in_index (list, optional): The indexs of input features to use in PointHead. Default: [0].
point_num_points (int, optional): The number of point in training mode in PointHead. Default: 2048.
point_oversample_ratio (int, optional): The sample ratio of points when in training mode in PointHead.
sampled_point = num_points * oversample_ratio. Default: 3.
point_importance_sample_ratio (float, optional): The importance sample ratio for compute num_uncertain_points in PointHead. Default: 0.75.
point_scale_factor(int, optinal): The scale factor of F.interpolate in refine seg logits stage when in inference in PointHead. Default: 2.
point_subdivision_steps(int, optional): Then refine steps in refine seg logits stage when in inference in PointHead. Default: 2.
point_subdivision_num_points(int, optional): The points number for refine seg logits when in inference in PointHead. Default: 8196.
point_dropout_ratio(float, optional): If the dropout_ratio >0, to use Dropout before output and the p of dropout is dropout_ratio in PointHead. Default: 0.1.
point_coarse_pred_each_layer(bool, optional): Whether concatenate coarse feature with
the output of each fc layer in PointHead. Default: True.
point_conv_cfg(str): The config of Conv in PointHead. Default: 'Conv1D'.
point_input_transform(str): The features transform method of inputs in PointHead.
it can be found in function '_transform_inputs'. Defalut: 'multiple_select'.
PFN_feature_strides(list): The strides for input feature maps and all strides suppose to be power of 2 in FPNHead. The first
one is of largest resolution. Default: [4, 8, 16, 32].
PFN_in_channels(list): The input feature's channels list in FPNHead. Default: [256, 256, 256, 256].
PFN_channels(int,optional): The output channels of scale_head's Conv before Upsample block in FPNHead. Default: 128.
PFN_in_index(list): The indexs of input features to use. it's shape should keep with in_channels in FPNHead. Default: [0, 1, 2, 3].
PFN_dropout_ratio(float,optional): If the dropout_ratio >0, to use Dropout before output and the p of dropout is dropout_ratio in FPNHead. Default: 0.1.
PFN_conv_cfg(str): The config of Conv. Default: 'Conv2D'.
PFN_input_transform(str): The features transform method of inputs. it can be found in function '_transform_inputs' in FPNHead. Defalut: 'multiple_select'.
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
pretrained (str, optional): The path or url of pretrained model. Default: None.
"""
def __init__(
self,
num_classes,
backbone,
backbone_indices,
fpn_inplanes=[256, 512, 1024, 2048],
fpn_outplanes=256,
point_in_channels=[256],
point_out_channels=256,
point_in_index=[0],
point_num_fcs=3,
point_num_points=2048,
point_oversample_ratio=3,
point_importance_sample_ratio=0.75,
point_scale_factor=2,
point_subdivision_steps=2,
point_subdivision_num_points=8196,
point_dropout_ratio=0,
point_coarse_pred_each_layer=True,
point_input_transform='multiple_select', # resize_concat
point_conv_cfg='Conv1D',
PFN_feature_strides=[4, 8, 16, 32],
PFN_in_channels=[256, 256, 256, 256],
PFN_channels=128,
PFN_in_index=[0, 1, 2, 3],
PFN_dropout_ratio=0,
PFN_conv_cfg='Conv2D',
PFN_input_transform='multiple_select',
align_corners=False,
pretrained=None):
super(PointRend, self).__init__()
self.backbone = backbone
self.backbone_indices = backbone_indices
self.in_channels = [
self.backbone.feat_channels[i] for i in backbone_indices
]
self.neck = FPNNeck(fpn_inplanes=fpn_inplanes,
fpn_outplanes=fpn_outplanes)
self.pointhead = PointHead(
in_channels=point_in_channels,
out_channels=point_out_channels,
num_classes=num_classes,
in_index=point_in_index,
num_fcs=point_num_fcs,
num_points=point_num_points,
oversample_ratio=point_oversample_ratio,
importance_sample_ratio=point_importance_sample_ratio,
scale_factor=point_scale_factor,
subdivision_steps=point_subdivision_steps,
subdivision_num_points=point_subdivision_num_points,
dropout_ratio=point_dropout_ratio,
align_corners=align_corners,
coarse_pred_each_layer=point_coarse_pred_each_layer,
input_transform=point_input_transform, # resize_concat
conv_cfg=point_conv_cfg)
self.fpnhead = FPNHead(feature_strides=PFN_feature_strides,
in_channels=PFN_in_channels,
channels=PFN_channels,
num_class=num_classes,
in_index=PFN_in_index,
dropout_ratio=PFN_dropout_ratio,
conv_cfg=PFN_conv_cfg,
input_transform=PFN_input_transform,
align_corners=align_corners)
self.align_corners = align_corners
self.pretrained = pretrained
self.init_weight()
def forward(self, x):
feats = self.backbone(x)
feats = [feats[i] for i in self.backbone_indices]
fpn_feats = self.neck(feats) # [n,256,64,128]*3 & [n,256,128,256]
pfn_logits = self.fpnhead(
fpn_feats
) # segmainoutput decode_head[0] 512*1024->[n, 19, 64, 128]
point_logits = self.pointhead(
fpn_feats, pfn_logits) # segpointoutput decode_head[1]
if self.training:
logit_list = [
F.interpolate(logit,
x.shape[2:],
mode='bilinear',
align_corners=self.align_corners)
for logit in pfn_logits
]
logit_list.append(point_logits)
else:
logit_list = [
F.interpolate(logit,
x.shape[2:],
mode='bilinear',
align_corners=self.align_corners)
for logit in point_logits
]
return logit_list
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
class PointHead(nn.Layer):
"""
The PointHead implementation based on PaddlePaddle.
PointHead use shared multi-layer perceptron (equivalent to
nn.Conv1D) to predict the logit of input points. The fine-grained feature
and coarse feature will be concatenate together for predication.
The original article refers to:
Kirillov A , Wu Y , He K , et al "PointRend: Image Segmentation As Rendering."
(https://arxiv.org/abs/1912.08193)
Args:
num_classes (int): Number of classes for logits. Default: 19.
num_fcs (int, optional): Number of fc layers in the head. Default: 3.
in_channels (list): input channels of fc block. Default: [256].
out_channels (int, optional): Fc block's output channels. Default: 256.
in_index (list): The indexs of input features to use. Default: [0].
num_points (int, optional): The number of point in training mode. Default: 2048.
oversample_ratio (int, optional): The sample ratio of points when in training mode.
sampled_point = num_points * oversample_ratio. Default: 3.
importance_sample_ratio(float, optional): The importance sample ratio for compute num_uncertain_points. Default: 0.75.
scale_factor(int, optional): The scale factor of F.interpolate in refine seg logits stage when in inference. Default: 2.
subdivision_steps(int, optional): Then refine steps in refine seg logits stage when in inference. Default: 2.
subdivision_num_points(int, optional): The points number for refine seg logits when in inference. Default: 8196.
dropout_ratio(float, optional): If the dropout_ratio >0, to use Dropout before output and the p of dropout is dropout_ratio. Default: 0.1.
coarse_pred_each_layer(bool, optional): Whether concatenate coarse feature with
the output of each fc layer. Default: True.
conv_cfg(str): The config of Conv. Default: 'Conv1D'.
input_transform(str): The features transform method of inputs.
it can be found in function '_transform_inputs'. Defalut: 'multiple_select'.
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
"""
def __init__(
self,
num_classes=19,
num_fcs=3,
in_channels=[256],
out_channels=256,
in_index=[0],
num_points=2048,
oversample_ratio=3,
importance_sample_ratio=0.75,
scale_factor=2,
subdivision_steps=2,
subdivision_num_points=8196,
dropout_ratio=0.1,
coarse_pred_each_layer=True,
conv_cfg='Conv1D',
input_transform='multiple_select', # resize_concat
align_corners=False):
super(PointHead, self).__init__()
self.in_channels = in_channels
self.channels = out_channels
self.in_index = in_index
self.num_classes = num_classes
self.num_fcs = num_fcs
self.num_points = num_points
self.oversample_ratio = oversample_ratio
self.importance_sample_ratio = importance_sample_ratio
self.scale_factor = scale_factor
self.subdivision_steps = subdivision_steps
self.subdivision_num_points = paddle.to_tensor([subdivision_num_points],
dtype="int64")
self.dropout_ratio = dropout_ratio
self.coarse_pred_each_layer = coarse_pred_each_layer
self.align_corners = align_corners
self.input_transform = input_transform
fc_in_channels = sum(self.in_channels) + self.num_classes
fc_channels = self.channels
self.fcs = nn.LayerList()
for k in range(num_fcs):
fc = ConvModule(
fc_in_channels,
fc_channels,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=conv_cfg,
)
self.fcs.append(fc)
fc_in_channels = fc_channels
fc_in_channels += self.num_classes if self.coarse_pred_each_layer else 0
self.fc_seg = nn.Conv1D(fc_in_channels,
self.num_classes,
kernel_size=1,
stride=1,
padding=0)
if self.dropout_ratio > 0:
self.dropout = nn.Dropout(self.dropout_ratio)
else:
self.dropout = None
def cls_seg(self, feat):
"""Classify each pixel with fc."""
if self.dropout is not None:
feat = self.dropout(feat)
output = self.fc_seg(feat)
return output
def _get_fine_grained_point_feats(self, x, points):
"""
Sample from fine grained features.
Args:
x (list[Tensor]): Feature pyramid from by neck or backbone.
points (Tensor): Point coordinates, shape (batch_size,
num_points, 2).
Returns:
fine_grained_feats (Tensor): Sampled fine grained feature,
shape (batch_size, sum(channels of x), num_points).
"""
fine_grained_feats_list = [
point_sample(_, points, align_corners=self.align_corners) for _ in x
]
if len(fine_grained_feats_list) > 1:
fine_grained_feats = paddle.concat(fine_grained_feats_list, axis=1)
else:
fine_grained_feats = fine_grained_feats_list[0]
return fine_grained_feats
def _get_coarse_point_feats(self, prev_output, points):
"""
Sample from fine grained features.
Args:
prev_output (list[Tensor]): Prediction of previous decode head.
points (Tensor): Point coordinates, shape (batch_size,
num_points, 2).
Returns:
coarse_feats (Tensor): Sampled coarse feature, shape (batch_size,
num_classes, num_points).
"""
coarse_feats = point_sample(prev_output,
points,
align_corners=self.align_corners)
return coarse_feats
def _transform_inputs(self, inputs):
"""
Transform inputs for decoder.
Args:
inputs (list[Tensor]): List of multi-level img features.
Returns:
Tensor: The transformed inputs
"""
if self.input_transform == 'resize_concat':
inputs = [inputs[i] for i in self.in_index]
upsampled_inputs = [
F.interpolate(x,
size=inputs[0].shape[2:],
mode='bilinear',
align_corners=self.align_corners) for x in inputs
]
inputs = paddle.concat(upsampled_inputs, axis=1)
elif self.input_transform == 'multiple_select':
inputs = [inputs[i] for i in self.in_index]
else:
inputs = inputs[self.in_index[0]]
return inputs
def get_points_train(self, seg_logits, uncertainty_func): # finish
"""
Sample points for training.
Sample points in [0, 1] x [0, 1] coordinate space based on their
uncertainty. The uncertainties are calculated for each point using
'uncertainty_func' function that takes point's logit prediction as
input.
Args:
seg_logits (Tensor): Semantic segmentation logits, shape (
batch_size, num_classes, height, width).
uncertainty_func (func): uncertainty calculation function.
cfg (dict): Training config of point head.
Returns:
point_coords (Tensor): A tensor of shape (batch_size, num_points,
2) that contains the coordinates of ``num_points`` sampled
points.
"""
num_points = self.num_points
oversample_ratio = self.oversample_ratio
importance_sample_ratio = self.importance_sample_ratio
assert oversample_ratio >= 1
assert 0 <= importance_sample_ratio <= 1
batch_size = seg_logits.shape[0]
num_sampled = int(num_points * oversample_ratio)
point_coords = paddle.rand([batch_size, num_sampled, 2])
point_logits = point_sample(seg_logits, point_coords)
# It is crucial to calculate uncertainty based on the sampled
# prediction value for the points. Calculating uncertainties of the
# coarse predictions first and sampling them for points leads to
# incorrect results. To illustrate this: assume uncertainty func(
# logits)=-abs(logits), a sampled point between two coarse
# predictions with -1 and 1 logits has 0 logits, and therefore 0
# uncertainty value. However, if we calculate uncertainties for the
# coarse predictions first, both will have -1 uncertainty,
# and sampled point will get -1 uncertainty.
point_uncertainties = uncertainty_func(point_logits)
num_uncertain_points = int(importance_sample_ratio * num_points)
num_random_points = num_points - num_uncertain_points
idx = paddle.topk(point_uncertainties[:, 0, :],
k=num_uncertain_points,
axis=1)[1]
shift = num_sampled * paddle.arange(batch_size, dtype='int64')
idx += shift.unsqueeze([-1])
idx = idx.reshape([-1])
point_coords = paddle.index_select(point_coords.reshape([-1, 2]),
idx,
axis=0)
point_coords = point_coords.reshape(
[batch_size, num_uncertain_points, 2])
if num_random_points > 0:
rand_point_coords = paddle.rand([batch_size, num_random_points, 2])
point_coords = paddle.concat((point_coords, rand_point_coords),
axis=1)
return point_coords
def get_points_test(self, seg_logits, uncertainty_func): # finish
"""
Sample points for testing.
Find ``num_points`` most uncertain points from ``uncertainty_map``.
Args:
seg_logits (Tensor): A tensor of shape (batch_size, num_classes,
height, width) for class-specific or class-agnostic prediction.
uncertainty_func (func): uncertainty calculation function.
cfg (dict): Testing config of point head.
Returns:
point_indices (Tensor): A tensor of shape (batch_size, num_points)
that contains indices from [0, height x width) of the most
uncertain points.
point_coords (Tensor): A tensor of shape (batch_size, num_points,
2) that contains [0, 1] x [0, 1] normalized coordinates of the
most uncertain points from the ``height x width`` grid .
"""
num_points = self.subdivision_num_points
uncertainty_map = uncertainty_func(seg_logits)
batch_size = paddle.shape(uncertainty_map)[0:1]
height = paddle.shape(uncertainty_map)[2:3]
width = paddle.shape(uncertainty_map)[3:4]
h_step = 1.0 / height
w_step = 1.0 / width
uncertainty_map = uncertainty_map.reshape([batch_size, height * width])
num_points = paddle.min(paddle.concat([height * width, num_points]))
point_indices = paddle.topk(uncertainty_map, num_points, axis=1)[1]
point_coords = paddle.zeros([batch_size, num_points, 2],
dtype='float32')
point_coords[:, :, 0] = w_step / 2.0 + point_indices.astype(
'float32') % width.astype('float32') * w_step
point_coords[:, :, 1] = h_step / 2.0 + point_indices.astype(
'float32') // width.astype('float32') * h_step
return point_indices, point_coords
def scatter_paddle(self, refined_seg_logits, point_indices, point_logits):
"""
paddle version scatter : equal to pytorch version scatter(-1,point_indices,point_logits).
Args:
refined_seg_logits(Tensor): shape=[batch_size, channels, height * width]
point_indices(Tensor): shape=[batch_size, channels, height * width]
point_logits(Tensor): shape[batch_size, channels, height * width]
Returns:
scattered refined_seg_logits(Tensor).
"""
original_shape = refined_seg_logits.shape # [batch_size, channels, height * width]
new_refined_seg_logits = refined_seg_logits.flatten(0, 1) # [N*C,H*W]
offsets = (paddle.arange(new_refined_seg_logits.shape[0]) *
new_refined_seg_logits.shape[1]).unsqueeze(-1) # [N*C,1]
point_indices = point_indices.flatten(0, 1) # [N*C,H*W]
new_point_indices = (point_indices + offsets).flatten()
point_logits = point_logits.flatten() # [N*C*H*W]
refined_seg_logits = paddle.scatter(refined_seg_logits.flatten(),
new_point_indices,
point_logits,
overwrite=True)
return refined_seg_logits.reshape(shape=original_shape)
def forward_train(self, x, prev_output):
with paddle.no_grad():
points = self.get_points_train(prev_output, calculate_uncertainty)
fine_grained_point_feats = self._get_fine_grained_point_feats(
x, points) # [2, 256, 2048]
coarse_point_feats = self._get_coarse_point_feats(
prev_output, points) # [2, 19, 2048]
# forward for train
fusion_point_feats = paddle.concat(
[fine_grained_point_feats, coarse_point_feats], axis=1)
for fc in self.fcs:
fusion_point_feats = fc(fusion_point_feats)
if self.coarse_pred_each_layer:
fusion_point_feats = paddle.concat(
(fusion_point_feats, coarse_point_feats), axis=1)
point_logits = self.cls_seg(fusion_point_feats)
return [point_logits, points] # for points loss
def forward(self, inputs, prev_output):
"""
Forward function.
Args:
inputs (list[Tensor]): List of multi-level img features.
prev_output (Tensor): The output of previous decode head.
Returns:
[point_logits,points]: For points loss when in training.
[refined_seg_logits]: Output refined seg logits when in inference.
"""
prev_output = prev_output[0]
x = self._transform_inputs(inputs)
if self.training:
return self.forward_train(x, prev_output)
else:
refined_seg_logits = prev_output.clone()
for _ in range(self.subdivision_steps):
refined_seg_logits = F.interpolate(
refined_seg_logits,
scale_factor=self.scale_factor,
mode='bilinear',
align_corners=self.align_corners)
save_shape = refined_seg_logits.shape
point_indices, points = self.get_points_test(
refined_seg_logits, calculate_uncertainty)
fine_grained_point_feats = self._get_fine_grained_point_feats(
x, points)
coarse_point_feats = self._get_coarse_point_feats(
prev_output, points)
# forward for inference
fusion_point_feats = paddle.concat(
[fine_grained_point_feats, coarse_point_feats], axis=1)
for fc in self.fcs:
fusion_point_feats = fc(fusion_point_feats)
if self.coarse_pred_each_layer:
fusion_point_feats = paddle.concat(
(fusion_point_feats, coarse_point_feats), axis=1)
point_logits = self.cls_seg(fusion_point_feats)
point_indices = paddle.unsqueeze(point_indices, axis=1)
point_indices = paddle.expand(point_indices,
[-1, save_shape[1], -1])
refined_seg_logits = paddle.flatten(refined_seg_logits, 2)
refined_seg_logits = self.scatter_paddle(
refined_seg_logits, point_indices,
point_logits) # 2->height * width dim
refined_seg_logits = refined_seg_logits.reshape(save_shape)
return [refined_seg_logits]
class FPNHead(nn.Layer):
"""
This head is the implementation of Semantic FPN in paddle.
The original article refers to:
Kirillov, A. , et al. "Panoptic Feature Pyramid Networks."
(https://arxiv.org/abs/1901.02446)
Args:
num_classes(int): The unique number of target classes. Default: 19.
feature_strides(list): The strides for input feature maps and all strides suppose to be power of 2. The first
one is of largest resolution. Default: [4, 8, 16, 32].
in_channels(list): The input feature's channels list. Default: [256, 256, 256, 256].
channels(int, optional): The output channels of scale_head's Conv before Upsample block. Default: 128.
in_index(list): The indexs of input features to use. it's shape should keep with in_channels. Default: [0, 1, 2, 3].
dropout_ratio(float, optional): If the dropout_ratio >0, to use Dropout before output and the p of dropout is dropout_ratio. Default: 0.1.
conv_cfg(str): The config of Conv. Default: 'Conv2D'.
input_transform(str): The features transform method of inputs. it can be found in function '_transform_inputs'. Defalut: 'multiple_select'.
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
"""
def __init__(
self,
num_class=19,
feature_strides=[4, 8, 16, 32],
in_channels=[256, 256, 256, 256],
channels=128,
in_index=[0, 1, 2, 3],
dropout_ratio=0.1,
conv_cfg='Conv2D',
input_transform='multiple_select',
align_corners=False,
):
super(FPNHead, self).__init__()
assert len(feature_strides) == len(in_channels)
assert min(feature_strides) == feature_strides[0]
self.feature_strides = feature_strides
self.in_channels = in_channels
self.channels = channels
self.in_index = in_index
self.num_class = num_class
self.conv_cfg = conv_cfg
self.dropout_ratio = dropout_ratio
self.input_transform = input_transform
self.align_corners = align_corners
self.scale_heads = nn.LayerList()
for i in range(len(feature_strides)):
head_length = max(
1,
int(np.log2(feature_strides[i]) - np.log2(feature_strides[0])))
scale_head = []
for k in range(head_length):
scale_head.append(
ConvModule(self.in_channels[i] if k == 0 else self.channels,
self.channels,
3,
padding=1,
conv_cfg=self.conv_cfg))
if feature_strides[i] != feature_strides[0]:
scale_head.append(
Upsample(scale_factor=2,
mode='bilinear',
align_corners=self.align_corners))
self.scale_heads.append(nn.Sequential(*scale_head))
self.conv_seg = nn.Conv2D(self.channels, self.num_class, kernel_size=1)
if self.dropout_ratio is not None:
self.dropout = nn.Dropout2D(self.dropout_ratio)
else:
self.dropout = None
def cls_seg(self, feat):
if self.dropout is not None:
feat = self.dropout(feat)
output = self.conv_seg(feat)
return output
def _transform_inputs(self, inputs):
"""
Transform inputs for decoder.
Args:
inputs (list[Tensor]): List of multi-level img features.
Returns:
Tensor: The transformed inputs
"""
if self.input_transform == 'resize_concat':
inputs = [inputs[i] for i in self.in_index]
upsampled_inputs = [
F.interpolate(x,
size=inputs[0].shape[2:],
mode='bilinear',
align_corners=self.align_corners) for x in inputs
]
inputs = paddle.concat(upsampled_inputs, axis=1)
elif self.input_transform == 'multiple_select':
inputs = [inputs[i] for i in self.in_index]
else:
inputs = inputs[self.in_index[0]]
return inputs
def forward(self, inputs):
x = self._transform_inputs(inputs)
output = self.scale_heads[0](x[0])
for i in range(1, len(self.feature_strides)):
output = output + F.interpolate(self.scale_heads[i](x[i]),
size=output.shape[2:],
mode='bilinear',
align_corners=self.align_corners)
output = self.cls_seg(output)
return [output]
class FPNNeck(nn.Layer):
"""
The FPN Neck implementation in paddle.
Args:
fpn_inplanes (list, optional): Input channels list(the feature channels from backbone) for lateral_conv constraction. Default: [256, 512, 1024, 2048].
fpn_outplanes (int, optional): The output channels. Default: 256.
"""
def __init__(
self,
fpn_inplanes=[256, 512, 1024, 2048],
fpn_outplanes=256,
):
super(FPNNeck, self).__init__()
self.lateral_convs = []
self.fpn_out = []
# FPN head
for fpn_inplane in fpn_inplanes:
self.lateral_convs.append(
nn.Sequential(nn.Conv2D(fpn_inplane, fpn_outplanes, 1),
layers.SyncBatchNorm(fpn_outplanes), nn.ReLU()))
self.fpn_out.append(
nn.Sequential(
layers.ConvBNReLU(fpn_outplanes,
fpn_outplanes,
3,
bias_attr=False)))
self.lateral_convs = nn.LayerList(self.lateral_convs)
self.fpn_out = nn.LayerList(self.fpn_out)
def forward(self, conv_out):
last_out = self.lateral_convs[-1](conv_out[-1])
f = last_out
fpn_feature_list = [last_out]
for i in reversed(range(len(conv_out) - 1)):
conv_x = conv_out[i]
conv_x = self.lateral_convs[i](conv_x)
prev_shape = conv_x.shape[2:]
f = conv_x + F.interpolate(
f, prev_shape, mode='bilinear', align_corners=True)
fpn_feature_list.append(self.fpn_out[i](f))
return fpn_feature_list
class ConvModule(nn.Layer):
"""
ConvModule includes Conv1/Conv2D.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
padding=0,
stride=1,
conv_cfg='Conv1D',
norm_cfg='None',
**kwargs):
super().__init__()
if (conv_cfg == 'Conv1D'):
self._conv = nn.Conv1D(in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
**kwargs)
if (conv_cfg == 'Conv2D'):
self._conv = nn.Conv2D(in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
**kwargs)
if 'data_format' in kwargs:
data_format = kwargs['data_format']
else:
data_format = 'NCHW'
if (norm_cfg != 'None'):
self._batch_norm = layers.SyncBatchNorm(out_channels,
data_format=data_format)
else:
self._batch_norm = None
def forward(self, x):
x = self._conv(x)
if (self._batch_norm != None):
x = self._batch_norm(x)
x = F.relu(x)
return x
class Upsample(nn.Layer):
"""
Upsample Module.
"""
def __init__(self,
size=None,
scale_factor=None,
mode='nearest',
align_corners=None):
super(Upsample, self).__init__()
self.size = size
if isinstance(scale_factor, tuple):
self.scale_factor = tuple(float(factor) for factor in scale_factor)
else:
self.scale_factor = float(scale_factor) if scale_factor else None
self.mode = mode
self.align_corners = align_corners
def forward(self, x):
if not self.size:
return F.interpolate(x, None, self.scale_factor, self.mode,
self.align_corners)
else:
return F.interpolate(x, self.size, None, self.mode,
self.align_corners)
def point_sample(input, points, align_corners=False, **kwargs):
"""
A wrapper around :func:`grid_sample` to support 3D point_coords tensors
Unlike :func:`torch.nn.functional.grid_sample` it assumes point_coords to
lie inside ``[0, 1] x [0, 1]`` square.
Args:
input (Tensor): Feature map, shape (N, C, H, W).
points (Tensor): Image based absolute point coordinates (normalized),
range [0, 1] x [0, 1], shape (N, P, 2) or (N, Hgrid, Wgrid, 2).
align_corners (bool): Whether align_corners. Default: False
Returns:
Tensor: Features of `point` on `input`, shape (N, C, P) or
(N, C, Hgrid, Wgrid).
"""
def denormalize(grid):
"""Denormalize input grid from range [0, 1] to [-1, 1]
Args:
grid (Tensor): The grid to be denormalize, range [0, 1].
Returns:
Tensor: Denormalized grid, range [-1, 1].
"""
return grid * 2.0 - 1.0
add_dim = False
if points.dim() == 3:
add_dim = True
points = paddle.unsqueeze(points, axis=2)
output = F.grid_sample(input,
denormalize(points),
align_corners=align_corners,
**kwargs)
if add_dim:
output = paddle.squeeze(output, axis=3)
return output
def calculate_uncertainty(seg_logits):
"""
Estimate uncertainty based on seg logits.
For each location of the prediction ``seg_logits`` we estimate
uncertainty as the difference between top first and top second
predicted logits.
Args:
seg_logits (Tensor): Semantic segmentation logits,
shape (batch_size, num_classes, height, width).
Returns:
scores (Tensor): T uncertainty scores with the most uncertain
locations having the highest uncertainty score, shape (
batch_size, 1, height, width)
"""
top2_scores = paddle.topk(seg_logits, k=2, axis=1)[0]
return paddle.unsqueeze(top2_scores[:, 1] - top2_scores[:, 0], axis=1)