You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+2-2Lines changed: 2 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -173,7 +173,7 @@ Via the easy-to-use, efficient, flexible and scalable implementation, our vision
173
173
- 🏆 **Streaming ASR and TTS System**: we provide production ready streaming asr and streaming tts system.
174
174
- 💯 **Rule-based Chinese frontend**: our frontend contains Text Normalization and Grapheme-to-Phoneme (G2P, including Polyphone and Tone Sandhi). Moreover, we use self-defined linguistic rules to adapt Chinese context.
175
175
- 📦 **Varieties of Functions that Vitalize both Industrial and Academia**:
176
-
- 🛎️ *Implementation of critical audio tasks*: this toolkit contains audio functions like Automatic Speech Recognition, Text-to-Speech Synthesis, Speaker Verfication, KeyWord Spotting, Audio Classification, and Speech Translation, etc.
176
+
- 🛎️ *Implementation of critical audio tasks*: this toolkit contains audio functions like Automatic Speech Recognition, Text-to-Speech Synthesis, Speaker Verification, KeyWord Spotting, Audio Classification, and Speech Translation, etc.
177
177
- 🔬 *Integration of mainstream models and datasets*: the toolkit implements modules that participate in the whole pipeline of the speech tasks, and uses mainstream datasets like LibriSpeech, LJSpeech, AIShell, CSMSC, etc. See also [model list](#model-list) for more details.
178
178
- 🧩 *Cascaded models application*: as an extension of the typical traditional audio tasks, we combine the workflows of the aforementioned tasks with other fields like Natural language processing (NLP) and Computer Vision (CV).
179
179
@@ -1025,7 +1025,7 @@ You are warmly welcome to submit questions in [discussions](https://github.com/P
1025
1025
- Many thanks to [vpegasus](https://github.com/vpegasus)/[xuesebot](https://github.com/vpegasus/xuesebot) for developing a rasa chatbot,which is able to speak and listen thanks to PaddleSpeech.
1026
1026
- Many thanks to [chenkui164](https://github.com/chenkui164)/[FastASR](https://github.com/chenkui164/FastASR) for the C++ inference implementation of PaddleSpeech ASR.
1027
1027
- Many thanks to [heyudage](https://github.com/heyudage)/[VoiceTyping](https://github.com/heyudage/VoiceTyping) for the real-time voice typing tool implementation of PaddleSpeech ASR streaming services.
1028
-
- Many thanks to [EscaticZheng](https://github.com/EscaticZheng)/[ps3.9wheel-install](https://github.com/EscaticZheng/ps3.9wheel-install) for the python3.9 prebuilt wheel for PaddleSpeech installation in Windows without Viusal Studio.
1028
+
- Many thanks to [EscaticZheng](https://github.com/EscaticZheng)/[ps3.9wheel-install](https://github.com/EscaticZheng/ps3.9wheel-install) for the python3.9 prebuilt wheel for PaddleSpeech installation in Windows without Visual Studio.
1029
1029
Besides, PaddleSpeech depends on a lot of open source repositories. See [references](./docs/source/reference.md) for more information.
1030
1030
- Many thanks to [chinobing](https://github.com/chinobing)/[FastAPI-PaddleSpeech-Audio-To-Text](https://github.com/chinobing/FastAPI-PaddleSpeech-Audio-To-Text) for converting audio to text based on FastAPI and PaddleSpeech.
1031
1031
- Many thanks to [MistEO](https://github.com/MistEO)/[Pallas-Bot](https://github.com/MistEO/Pallas-Bot) for QQ bot based on PaddleSpeech TTS.
recall and elapsed time statistics are shown in the following figure:
223
223
@@ -226,7 +226,7 @@ recall and elapsed time statistics are shown in the following figure:
226
226
227
227
The retrieval framework based on Milvus takes about 2.9 milliseconds to retrieve on the premise of 90% recall rate, and it takes about 500 milliseconds for feature extraction (testing audio takes about 5 seconds), that is, a single audio test takes about 503 milliseconds in total, which can meet most application scenarios.
0 commit comments