From 051101c41c5c1132183f481b200ab0e46562ddc0 Mon Sep 17 00:00:00 2001 From: AmberC0209 <1316695365@qq.com> Date: Thu, 24 Oct 2024 18:33:27 +0800 Subject: [PATCH] fix hyperlinks --- README_cn.md | 2 +- docs/paddlex/overview.md | 2 +- docs/paddlex/quick_start.md | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/README_cn.md b/README_cn.md index f44e807..e98991f 100644 --- a/README_cn.md +++ b/README_cn.md @@ -34,7 +34,7 @@ PaddleTS 是一个易用的深度时序建模的Python库,它基于飞桨深 * 🔥 飞桨低代码开发工具PaddleX,依托于PaddleTS的先进技术,支持时序分析领域的低代码全流程开发能力 * 🎨 [**模型丰富一键调用**](docs/paddlex/quick_start.md):将时序预测、时序异常检测和时序分类涉及的**13个模型**整合为3条模型产线,通过极简的**Python API一键调用**,快速体验模型效果。此外,同一套API,也支持图像分类、图像分割、目标检测、文本图像智能分析、通用OCR等共计**200+模型**,形成20+单功能模块,方便开发者进行**模型组合使用**。 - * 🚀 [**提高效率降低门槛**](docs/paddlex/overview.md):提供基于**统一命令**和**图形界面**两种方式,实现模型简洁高效的使用、组合与定制。支持**高性能部署、服务化部署和端侧部署**等多种部署方式。此外,对于各种主流硬件如**英伟达GPU、昆仑芯、昇腾、寒武纪和海光**等,进行模型开发时,都可以**无缝切换**。 + * 🚀 [**提高效率降低门槛**](docs/paddlex/overview.md):提供基于**统一命令**和**图形界面**两种方式,实现模型简洁高效的使用、组合与定制。支持**高性能推理、服务化部署和端侧部署**等多种部署方式。此外,对于各种主流硬件如**英伟达GPU、昆仑芯、昇腾、寒武纪和海光**等,进行模型开发时,都可以**无缝切换**。 * 🔥 增加7个时序预测前沿算法[**DLinear、NLinear、RLinear、Nonstationary、PatchTST、TiDE、TimesNet**](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/time_series_modules/time_series_forecasting.md),5个时序异常检测前沿算法[**AutoEncoder_ad、DLinear_ad、Nonstationary_ad、PatchTST_ad、TimesNet_ad**](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/time_series_modules/time_series_anomaly_detection.md)和1个时序分类算法[**TimesNet_cls**](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/time_series_modules/time_series_classification.md)。 diff --git a/docs/paddlex/overview.md b/docs/paddlex/overview.md index 21ba654..52df067 100644 --- a/docs/paddlex/overview.md +++ b/docs/paddlex/overview.md @@ -20,7 +20,7 @@ ## 2. 时序分析相关能力支持 -PaddleX中时序分析相关的3条产线均支持本地**快速推理**,部分产线支持**在线体验**,您可以快速体验各个产线的预训练模型效果,如果您对产线的预训练模型效果满意,可以直接对产线进行[高性能部署](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/high_performance_deploy.md)/[服务化部署](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/service_deploy.md),如果不满意,您也可以使用产线的**二次开发**能力,提升效果。完整的产线开发流程请参考[PaddleX产线使用概览](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/pipeline_develop_guide.md)或各产线使用教程。 +PaddleX中时序分析相关的3条产线均支持本地**快速推理**,部分产线支持**在线体验**,您可以快速体验各个产线的预训练模型效果,如果您对产线的预训练模型效果满意,可以直接对产线进行[高性能推理](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/high_performance_inference.md)/[服务化部署](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/service_deploy.md),如果不满意,您也可以使用产线的**二次开发**能力,提升效果。完整的产线开发流程请参考[PaddleX产线使用概览](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/pipeline_develop_guide.md)或各产线使用教程。 此外,PaddleX为开发者提供了基于[云端图形化开发界面](https://aistudio.baidu.com/pipeline/mine)的全流程开发工具, 详细请参考[教程《零门槛开发产业级AI模型》](https://aistudio.baidu.com/practical/introduce/546656605663301) diff --git a/docs/paddlex/quick_start.md b/docs/paddlex/quick_start.md index 97db1a4..d3a1056 100644 --- a/docs/paddlex/quick_start.md +++ b/docs/paddlex/quick_start.md @@ -81,7 +81,7 @@ date ### 📝 Python脚本使用 -几行代码即可完成产线的快速推理,以时序分类产线为例: +使用 [测试文件](https://paddle-model-ecology.bj.bcebos.com/paddlex/ts/demo_ts/ts_cls.csv),并将 `predict()` 替换为本地路径几行代码即可完成产线的快速推理,以时序分类产线为例: ```python from paddlex import create_pipeline