-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Open
Description
- docker image: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlex/hps:paddlex3.3-gpu
- docker compose如下:
services:
paddlex-server:
image: ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlex/hps:paddlex3.3-gpu
container_name: paddlex-server
command: /bin/bash server.sh
environment:
- CUDA_VISIBLE_DEVICES=4,5,6,7
- PADDLEX_HPS_DEVICE_TYPE=GPU
- PADDLEX_HPS_USE_HPIP=1
volumes:
- /etc/localtime:/etc/localtime:ro
- /usr/share/zoneinfo/Asia/Shanghai:/usr/share/zoneinfo/Asia/Shanghai:ro
- /home/vg_llm/PaddleX/paddlex_hps_OCR_sdk/server:/app
- /home/vg_llm/PaddleX/model:/model
working_dir: /app
network_mode: host
privileged: true
shm_size: 16g
stdin_open: true
tty: true
init: true
restart: "always"
deploy:
resources:
reservations:
devices:
- driver: nvidia
device_ids: ["4", "5", "6", "7"]
capabilities: [gpu]
OCR-SDK的server文件夹下的pipeline_config.yaml如下:
pipeline_name: OCR
text_type: general
use_doc_preprocessor: True
use_textline_orientation: True
SubPipelines:
DocPreprocessor:
pipeline_name: doc_preprocessor
use_doc_orientation_classify: True
use_doc_unwarping: True
SubModules:
DocOrientationClassify:
module_name: doc_text_orientation
model_name: PP-LCNet_x1_0_doc_ori
model_dir: /model/PP-LCNet_x1_0_doc_ori_infer
auto_config: False
use_hpip: True
DocUnwarping:
module_name: image_unwarping
model_name: UVDoc
model_dir: /model/UVDoc_infer
auto_config: False
use_hpip: True
SubModules:
TextDetection:
module_name: text_detection
model_name: PP-OCRv5_server_det
model_dir: /model/PP-OCRv5_server_det_infer
auto_config: False
use_hpip: True
limit_side_len: 64
limit_type: min
max_side_limit: 4000
thresh: 0.3
box_thresh: 0.6
unclip_ratio: 1.5
TextLineOrientation:
module_name: textline_orientation
model_name: PP-LCNet_x1_0_textline_ori
model_dir: /model/PP-LCNet_x1_0_textline_ori_infer
auto_config: False
use_hpip: True
batch_size: 6
TextRecognition:
module_name: text_recognition
model_name: PP-OCRv5_server_rec
model_dir: /model/PP-OCRv5_server_rec_infer
auto_config: False
use_hpip: True
batch_size: 6
score_thresh: 0.0
可以看到docker compose写了PADDLEX_HPS_USE_HPIP=1,按照服务化部署。
然后看到高性能推理写了需要在pipeline_config.yaml给每个模型配置添加use_hpip: True,但启动服务的时候会出现The Paddle Inference backend is selected with the default configuration. This may not provide optimal performance.。再然后看到能够添加tensorRT后端,然后在每个模型的use_hpip: True的后面一行添加:
use_hpip: True
hpi_config:
backend: tensorrt
这时候重新创建容器,会报错:E1211 07:30:50.603498 7 model_repository_manager.cc:1186] failed to load 'ocr' version 1: Internal: RuntimeError: No inference backend and configuration could be suggested. Reason: Inference backend 'tensorrt' is unavailable.
请问如何正确开启高性能推理?