-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtst_var_get_varm.py
101 lines (86 loc) · 3.62 KB
/
tst_var_get_varm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#
# Copyright (C) 2024, Northwestern University and Argonne National Laboratory
# See COPYRIGHT notice in top-level directory.
#
"""
This example program is intended to illustrate the use of the pnetCDF python API.
It is a program which simultaneously transposes, subsamples and reads a variable within a netCDF file using
get_var method of `Variable` class, the library internally will invoke ncmpi_get_varm in C.
"""
import pnetcdf
from numpy.random import seed, randint
from numpy.testing import assert_array_equal, assert_equal, assert_array_almost_equal
import tempfile, unittest, os, random, sys
import numpy as np
from mpi4py import MPI
from utils import validate_nc_file
import io
seed(0)
# Format of the data file we will create (64BIT_DATA for CDF-5 and 64BIT_OFFSET for CDF-2)
file_formats = ['NC_64BIT_DATA', 'NC_64BIT_OFFSET', None]
# Name of the test data file
file_name = "tst_var_get_varm.nc"
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
xdim=6; ydim=4
# Numpy array data to be written to nc variable
data = randint(0,10,size=(xdim,ydim)).astype('f4')
# Reference numpy array for testing
dataref = data[::2, ::2].transpose()
starts = np.array([0,0])
counts = np.array([3,2])
strides = np.array([2,2])
imap = np.array([1,3]) #would be [2, 1] if not transposing
class VariablesTestCase(unittest.TestCase):
def setUp(self):
if (len(sys.argv) == 2) and os.path.isdir(sys.argv[1]):
self.file_path = os.path.join(sys.argv[1], file_name)
else:
self.file_path = file_name
self._file_format = file_formats.pop(0)
# Create the test data file
f = pnetcdf.File(filename=self.file_path, mode = 'w', format=self._file_format, comm=comm, info=None)
# Define dimensions needed, one of the dims is unlimited
f.def_dim('x',xdim)
f.def_dim('y',ydim)
# For the variable dimensioned with limited dims, we are writing 2D data on a 4 X 6 grid
v1 = f.def_var('data1', pnetcdf.NC_FLOAT, ('x','y'))
# Enter data mode
f.enddef()
# Write to variables using indexer
v1[:] = data
f.close()
# Validate the created data file using ncvalidator tool
assert validate_nc_file(os.environ.get('PNETCDF_DIR'), self.file_path) == 0 if os.environ.get('PNETCDF_DIR') is not None else True
def tearDown(self):
# Wait for all processes to finish testing (in multiprocessing mode)
comm.Barrier()
# Remove testing file
if (rank == 0) and (self.file_path == file_name):
os.remove(self.file_path)
def runTest(self):
"""testing reading variables with CDF5/CDF2/CDF1 file format"""
f = pnetcdf.File(self.file_path, 'r')
f.end_indep()
v1 = f.variables['data1']
v1_data = np.empty((2,3), dtype = np.float32)
v1.get_var_all(data = v1_data, start = starts, count = counts, stride = strides, imap = imap)
assert_array_equal(v1_data, dataref)
# Test reading from the variable in independent mode
f.begin_indep()
v1_data = np.empty((2,3), dtype = np.float32)
v1.get_var(data = v1_data, start = starts, count = counts, stride = strides, imap = imap)
assert_array_equal(v1_data, dataref)
f.close()
if __name__ == '__main__':
suite = unittest.TestSuite()
for i in range(len(file_formats)):
suite.addTest(VariablesTestCase())
runner = unittest.TextTestRunner()
output = io.StringIO()
runner = unittest.TextTestRunner(stream=output)
result = runner.run(suite)
if not result.wasSuccessful():
print(output.getvalue())
sys.exit(1)