-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaudio.sv
531 lines (481 loc) · 11.4 KB
/
audio.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
/* audio.sv
* Top Module
* Author: Sound Localizer Team
* Notes:
* 1. There is a startup time for mic.
* 2. Need a buffer (FIFO) when signals cross clock domains.
*/
module audio(
input logic clk, // 50M, 20ns
input logic reset,
input logic chipselect,
input logic read,
input logic write,
input logic [31:0] writedata,
input logic [2:0] address,
input logic SD1, // Serial data input: microphone set 1
input logic SD2, // Set 2
input logic SD3, //
input logic SD4, //
input logic SCK, // Sampling rate * 32 bits * 2 channels: 320
output logic WS, // Sampling rate
output logic irq, // Reserved. We didn't use it
output logic [31:0] readdata,
// X
output logic [6:0] disp2,
output logic [6:0] disp1,
output logic [6:0] disp0,
// Y
output logic [6:0] disp5,
output logic [6:0] disp4,
output logic [6:0] disp3,
// VGA
output logic [7:0] VGA_R, VGA_G, VGA_B,
output logic VGA_CLK, VGA_HS, VGA_VS,
VGA_BLANK_n,
output logic VGA_SYNC_n
);
// Initialize
logic rst_n = 0;
logic sck_rst = 1;
logic [3:0] count1 = 4'd0;
logic [3:0] count2 = 4'd0;
logic [5:0] clk_cnt; // 64 counter to generate WS signal
logic [4:0] stretch_cnt1, stretch_cnt2; // Strech signal for sync
logic go, go_SCK; // To start a new cycle of sampling and calculation. go_SCK sync with SCK clock.
logic [23:0] right1, left1, right2, left2, right3, left3, right4, left4; // Temp memory
// FIFO for raw data, aka the data directly from mic outputs
logic wrreq; // Write request (enable) for raw data FIFO
logic [10:0] wr_addr; // RAM write address
logic [10:0] rd_addr; // RAM read address
logic [15:0] ram1_in, ram2_in, ram3_in, ram4_in, ram5_in, ram6_in, ram7_in, ram8_in; // RAM inputs
logic [15:0] ram1q, ram2q, ram3q, ram4q, ram5q, ram6q, ram7q, ram8q; // RAM outputs
logic ready1, ready2, ready3, ready4, ready5, ready6, ready7, ready8; // Asserted when raw data FIFO is full
logic rdreq1, rdreq2, rdreq3, rdreq4, rdreq5, rdreq6, rdreq7, rdreq8; // Read requests
// FFT wrapper
logic [27:0] ram1_fft, ram2_fft, ram3_fft, ram4_fft, ram5_fft, ram6_fft, ram7_fft, ram8_fft;// Outputs for fft RAM
// Frequency detector
logic fftdone, detectdone;
logic [9:0] rd_addr_fd_x, maxbin_x; // Read address of FFT RAM of x dimension & Max bin number.
logic [9:0] rd_addr_fd_y, maxbin_y;
// Weight block
logic [9:0] rdaddr2_wb_x, rdaddr3_wb_x, rdaddr4_wb_x; // Read address of FFT RAM, to extract correct bin
logic [9:0] rdaddr2_wb_y, rdaddr3_wb_y, rdaddr4_wb_y;
logic wbdone, wbdone_SCK;
logic [5:0] bnum_x, bnum_y;
logic [7:0] doa_x, doa_y;
// VGA logic
logic [10:0] xcoor;
logic [9:0] ycoor;
// Testing logic
logic [9:0] rd_addr_fft1, rd_addr_fft2, rd_addr_fft3, rd_addr_fft4, rd_addr_fft5, rd_addr_fft6, rd_addr_fft7, rd_addr_fft8;
enum {IDLE, WRITE, READ} state;
/* Generate reset signal
*/
always_ff @(posedge clk) begin
count1 <= count1 + 4'd1;
if (count1 == 4'b1111)
rst_n <= 1'd1;
end
always_ff @(negedge SCK) begin
count2 <= count2 + 4'd1;
if (count2 == 4'b1111)
sck_rst = 1'd0;
end
/* Go signal synchronizer
* go -> go_SCK
* wbdone -> wbdone_SCK
* Faster clk -> Slower SCK
* 320/20 = 16
* Stretch the go_clk signal so that SCK can get
*/
always_ff @(posedge clk) begin
if (~rst_n) begin
stretch_cnt1 <= 5'd0;
stretch_cnt2 <= 5'd0;
end else begin
if (go) begin
stretch_cnt1 <= 5'd16;
end else if (stretch_cnt1 > 5'd0) begin
stretch_cnt1 <= stretch_cnt1 - 5'd1;
end
if (wbdone) begin
stretch_cnt2 <= 5'd16;
end else if (stretch_cnt2 > 5'd0) begin
stretch_cnt2 <= stretch_cnt2 - 5'd1;
end
end
end
assign go_SCK = (stretch_cnt1 > 0) ? 1'd1 : 1'd0;
assign wbdone_SCK = (stretch_cnt2 > 0) ? 1'd1 : 1'd0;
/* WS clock generator
* 64 division
*/
always_ff @(negedge SCK) begin // Negedge of SCK
if (sck_rst) begin
clk_cnt <= 6'd0;
end else begin
clk_cnt <= clk_cnt + 6'd1;
end
end
assign WS = clk_cnt[5]; // Flip at 31st cycles
/* I2S decoder
* Get left and right channels based on the clk_cnt counter
* 0-25 left channel
* 32-57 right channel
*/
always_ff @(negedge SCK) begin
if (sck_rst) begin // Initialize
left1 <= 24'd0;
right1 <= 24'd0;
left2 <= 24'd0;
right2 <= 24'd0;
left3 <= 24'd0;
right3 <= 24'd0;
left4 <= 24'd0;
right4 <= 24'd0;
ram1_in <= 16'd0;
ram2_in <= 16'd0;
ram3_in <= 16'd0;
ram4_in <= 16'd0;
ram5_in <= 16'd0;
ram6_in <= 16'd0;
ram7_in <= 16'd0;
ram8_in <= 16'd0;
wr_addr <= 11'd2047;// 0 address is avaible
wrreq <= 1'd0; // Initialize with 0 to reset RAMs
state <= IDLE;
end else begin
// Read from the bus
if (clk_cnt > 0 && clk_cnt < 25) begin // Left channel, 24-bit dept, MSB first
left1 <= {left1[22:0], SD1};
left2 <= {left2[22:0], SD2};
left3 <= {left3[22:0], SD3};
left4 <= {left4[22:0], SD4};
end else if (clk_cnt > 32 && clk_cnt < 57) begin // Right channel
right1 <= {right1[22:0], SD1};
right2 <= {right2[22:0], SD2};
right3 <= {right3[22:0], SD3};
right4 <= {right4[22:0], SD4};
end
// FSM:
// IDLE: Transit to WRITE state when go_SCK is high
// WRITE: Write raw data to RAMs
// READ: Ready to be read to the FFT wrapper
case (state)
IDLE: begin
if (go_SCK)
state <= WRITE;
else
state <= IDLE;
end
WRITE:begin
if (clk_cnt == 57) begin
ram1_in <= left1[23:8]; // Discard the lesast 8 bits
ram2_in <= right1[23:8];
ram3_in <= left2[23:8];
ram4_in <= right2[23:8];
ram5_in <= left3[23:8];
ram6_in <= right3[23:8];
ram7_in <= left4[23:8];
ram8_in <= right4[23:8];
wrreq <= 1'd1;
wr_addr <= wr_addr + 11'd1; // Start with address 0
end else if (clk_cnt == 58) begin
wrreq <= 1'd0;
end
if (wr_addr == 10'd1023)
state <= READ;
else
state <= WRITE;
end
READ: begin
wr_addr <= 11'd2047;
if (go_SCK) begin
state <= WRITE;
end else begin
state <= READ;
end
end
default: begin
state <= IDLE;
end
endcase
end
end
/* Two Port RAM Instantiation
* Raw data from i2s bus
*/
myfifo fifo1(
.data (ram1_in),
.rdclk (clk),
.rdreq (rdreq1),
.wrclk (SCK),
.wrreq (wrreq),
.q (ram1q),
.rdfull (ready1),
.wrempty()
);
myfifo fifo2(
.data (ram2_in),
.rdclk (clk),
.rdreq (rdreq2),
.wrclk (SCK),
.wrreq (wrreq),
.q (ram2q),
.rdfull (ready2),
.wrempty()
);
myfifo fifo3(
.data (ram3_in),
.rdclk (clk),
.rdreq (rdreq3),
.wrclk (SCK),
.wrreq (wrreq),
.q (ram3q),
.rdfull (ready3),
.wrempty()
);
myfifo fifo4(
.data (ram4_in),
.rdclk (clk),
.rdreq (rdreq4),
.wrclk (SCK),
.wrreq (wrreq),
.q (ram4q),
.rdfull (ready4),
.wrempty()
);
myfifo fifo5(
.data (ram5_in),
.rdclk (clk),
.rdreq (rdreq5),
.wrclk (SCK),
.wrreq (wrreq),
.q (ram5q),
.rdfull (ready5),
.wrempty()
);
myfifo fifo6(
.data (ram6_in),
.rdclk (clk),
.rdreq (rdreq6),
.wrclk (SCK),
.wrreq (wrreq),
.q (ram6q),
.rdfull (ready6),
.wrempty()
);
myfifo fifo7(
.data (ram7_in),
.rdclk (clk),
.rdreq (rdreq7),
.wrclk (SCK),
.wrreq (wrreq),
.q (ram7q),
.rdfull (ready7),
.wrempty()
);
myfifo fifo8(
.data (ram8_in),
.rdclk (clk),
.rdreq (rdreq8),
.wrclk (SCK),
.wrreq (wrreq),
.q (ram8q),
.rdfull (ready8),
.wrempty()
);
/* FFT wrapper module instantiation
*/
// X axis
fft_wrapper fft1(
.clk(clk),
.rst_n(rst_n),
.go(detectdone),
.ready(ready1), // Raw data ready
.data_in(ram1q[15:2]), // Raw data in
.rd_addr_fft(rd_addr_fft1),// Read address of fft RAMs
.fftdone(fftdone),
.rdreq(rdreq1),
.ram_q(ram1_fft) // fft results from fft RAMs
);
fft_wrapper fft2(
.clk(clk),
.rst_n(rst_n),
.go(detectdone),
.ready(ready2),
.data_in(ram2q[15:2]),
.rd_addr_fft(rd_addr_fft2),
.fftdone(),
.rdreq(rdreq2),
.ram_q(ram2_fft)
);
fft_wrapper fft3(
.clk(clk),
.rst_n(rst_n),
.go(detectdone),
.ready(ready3),
.data_in(ram3q[15:2]),
.rd_addr_fft(rd_addr_fft3),
.fftdone(),
.rdreq(rdreq3),
.ram_q(ram3_fft)
);
fft_wrapper fft4(
.clk(clk),
.rst_n(rst_n),
.go(detectdone),
.ready(ready4),
.data_in(ram4q[15:2]),
.rd_addr_fft(rd_addr_fft4),
.fftdone(),
.rdreq(rdreq4),
.ram_q(ram4_fft)
);
// Y
fft_wrapper fft5(
.clk(clk),
.rst_n(rst_n),
.go(detectdone),
.ready(ready5),
.data_in(ram5q[15:2]),
.rd_addr_fft(rd_addr_fft5),
.fftdone(),
.rdreq(rdreq5),
.ram_q(ram5_fft)
);
fft_wrapper fft6(
.clk(clk),
.rst_n(rst_n),
.go(detectdone),
.ready(ready6),
.data_in(ram6q[15:2]),
.rd_addr_fft(rd_addr_fft6),
.fftdone(),
.rdreq(rdreq6),
.ram_q(ram6_fft)
);
fft_wrapper fft7(
.clk(clk),
.rst_n(rst_n),
.go(detectdone),
.ready(ready7),
.data_in(ram7q[15:2]),
.rd_addr_fft(rd_addr_fft7),
.fftdone(),
.rdreq(rdreq7),
.ram_q(ram7_fft)
);
fft_wrapper fft8(
.clk(clk),
.rst_n(rst_n),
.go(detectdone),
.ready(ready8),
.data_in(ram8q[15:2]),
.rd_addr_fft(rd_addr_fft8),
.fftdone(),
.rdreq(rdreq8),
.ram_q(ram8_fft)
);
// Test Interface
assign rd_addr_fft1 = rd_addr_fd_x;
assign rd_addr_fft2 = rdaddr2_wb_x;
assign rd_addr_fft3 = rdaddr3_wb_x;
assign rd_addr_fft4 = rdaddr4_wb_x;
assign rd_addr_fft5 = rd_addr_fd_y;
assign rd_addr_fft6 = rdaddr2_wb_y;
assign rd_addr_fft7 = rdaddr3_wb_y;
assign rd_addr_fft8 = rdaddr4_wb_y;
/* Frequency detector instantiation
*/
freqdetect fd_inst1(
.clk (clk), // 50 MHz, 20 ns
.reset (~rst_n),
.fftdone (fftdone), // Set high upon FFT block finishing
.ramq (ram1_fft), // Output port of channel 1 FFT RAM
.detectdone (detectdone), // Set high when iteration is complete
.ramaddr (rd_addr_fd_x), // Address to read from RAM
.maxbin (maxbin_x)// Index of max bin
);
freqdetect fd_inst2(
.clk (clk), // 50 MHz, 20 ns
.reset (~rst_n),
.fftdone (fftdone), // Set high upon FFT block finishing
.ramq (ram5_fft), // Output port of channel 1 FFT RAM
.detectdone (), // Set high when iteration is complete
.ramaddr (rd_addr_fd_y), // Address to read from RAM
.maxbin (maxbin_y)// Index of max bin
);
/* Weight block instantiation
*/
weightblock wb_inst1(
.clk (clk),
.reset (~rst_n),
.detectdone (detectdone),
.maxbin (maxbin_x),
.ramq1 (ram1_fft), // FFT RAMs
.ramq2 (ram2_fft),
.ramq3 (ram3_fft),
.ramq4 (ram4_fft),
.rdaddr2 (rdaddr2_wb_x), // Will be set to maxbin for all FFT RAMs
.rdaddr3 (rdaddr3_wb_x),
.rdaddr4 (rdaddr4_wb_x),
.weightdone (wbdone),
.bnum (bnum_x), // (0 to 36)
.doa (doa_x), // (-90 to 90)
.disp2 (disp2),
.disp1 (disp1),
.disp0 (disp0) // 7seg displays
);
weightblock wb_inst2(
.clk (clk),
.reset (~rst_n),
.detectdone (detectdone),
.maxbin (maxbin_y),
.ramq1 (ram5_fft), // FFT RAMs
.ramq2 (ram6_fft),
.ramq3 (ram7_fft),
.ramq4 (ram8_fft),
.rdaddr2 (rdaddr2_wb_y), // Will be set to maxbin for all FFT RAMs
.rdaddr3 (rdaddr3_wb_y),
.rdaddr4 (rdaddr4_wb_y),
.weightdone (),
.bnum (bnum_y), // (0 to 36)
.doa (doa_y), // (-90 to 90)
.disp2 (disp5),
.disp1 (disp4),
.disp0 (disp3) // 7seg displays
);
vga_ball vga_inst(
clk, ~rst_n, xcoor, ycoor,
VGA_R, VGA_G, VGA_B,
VGA_CLK, VGA_HS, VGA_VS,
VGA_BLANK_n,
VGA_SYNC_n
);
/* Avalon bus configuration
* readdata: FPGA -> HPS
* writedata: HPS -> FPGA
*/
always_ff @(posedge clk) begin
if (reset) begin
irq <= 1'd0;
readdata <= 32'd0;
go <= 1'd0;
xcoor <= 11'd630;
ycoor <= 10'd240;
end else if (chipselect && read) begin
case (address)
3'h0: readdata <= {{24{doa_x[7]}}, doa_x};
3'h1: readdata <= {{24{doa_y[7]}}, doa_y};
endcase
end else if (chipselect && write) begin
case (address)
3'h0 : go <= writedata[0];
3'h1 : xcoor <= writedata[10:0]; // Lower 8 digits of xcoor
3'h2 : ycoor <= writedata[9:0]; // Lower 8 digits of ycoor
endcase
end
end
endmodule