-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfeature_extraction.py
42 lines (38 loc) · 1.27 KB
/
feature_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import argparse
import cv2
import numpy as np
import torch
import os
from pathlib import Path
from iresnet import iresnet100
@torch.no_grad()
def inference(net, img):
if img is None:
img = np.random.randint(0, 255, size=(112, 112, 3), dtype=np.uint8)
else:
img = cv2.imread(img)
img = cv2.resize(img, (112, 112))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.transpose(img, (2, 0, 1))
img = torch.from_numpy(img).unsqueeze(0).float()
img.div_(255).sub_(0.5).div_(0.5)
feat = net(img).numpy()
return feat
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='PyTorch ArcFace Training')
parser.add_argument('--network', type=str, default='r100', help='backbone network')
parser.add_argument('--weight', type=str, default='')
parser.add_argument('--path_database', type=Path)
args = parser.parse_args()
check=os.path.exists('database_tensor')
if check==False:
os.mkdir('database_tensor')
net = iresnet100(False)
net.load_state_dict(torch.load(args.weight))
net.eval()
path=args.path_database
import os
img=os.listdir(path)
for im in img:
np.save('database_tensor/'+im.replace('.png','')+'.npy',inference(net, str(path)+'/'+im))
print(im)