-
Notifications
You must be signed in to change notification settings - Fork 211
/
Copy pathsample-chapter.ptx
2930 lines (2664 loc) · 150 KB
/
sample-chapter.ptx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0" encoding="UTF-8" ?>
<!-- ********************************************************************* -->
<!-- Copyright 2015-7 -->
<!-- Robert A. Beezer, Michael Gage, Geoff Goehle, Alex Jordan -->
<!-- -->
<!-- This file is part of PreTeXt. -->
<!-- -->
<!-- PreTeXt is free software: you can redistribute it and/or modify -->
<!-- it under the terms of the GNU General Public License as published by -->
<!-- the Free Software Foundation, either version 2 or version 3 of the -->
<!-- License (at your option). -->
<!-- -->
<!-- PreTeXt is distributed in the hope that it will be useful, -->
<!-- but WITHOUT ANY WARRANTY; without even the implied warranty of -->
<!-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -->
<!-- GNU General Public License for more details. -->
<!-- -->
<!-- You should have received a copy of the GNU General Public License -->
<!-- along with PreTeXt. If not, see <http://www.gnu.org/licenses/>. -->
<!-- ********************************************************************* -->
<pretext>
<!-- Other languages can be used to internationalize parts of a document -->
<!-- <pretext xml:lang="pt-BR"> -->
<!-- "docinfo" is like metadata, it is necessary technical -->
<!-- information which a reader mostly will never see. -->
<docinfo>
<!-- To aid uniqueness of database identifiers in Runestone -->
<document-id edition="2">PTXWW</document-id>
<!-- In the HTML version there is room for a -->
<!-- picture or logo in the upper left corner. -->
<brandlogo url="http://webwork.maa.org/" source="images/webwork-logo.png" />
<!-- For WeBWorK problems, these LaTeX macros must -->
<!-- (a) be entirely on one line -->
<!-- (b) not employ a previous custom macro -->
<!-- (c) be defined only via \newcommand{<name>}{<command>} -->
<macros>
\newcommand{\definiteintegral}[4]{\int_{#1}^{#2}\,#3\,d#4}
\newcommand{\indefiniteintegral}[2]{\int#1\,d#2} % comments get stripped
</macros>
<!-- this is the default, but supresses a warning -->
<cross-references text="type-global" />
<!--
This initialism specifies the filename of the macro file (WWSC.pl) that
must be present in the WeBWorK server to be able to generate latex-image
images. Make sure this macro file is in your server (a copy is
included in pg-macros folder), and that the macro filename is changed
if the initialism is changed.
-->
<initialism>WWSC</initialism>
<!--
With a <feedback> element, in the HTML version, you get a button
for reporting typos and errors. You might link to a Google Docs
spreadsheet or something similar. Default is to get a button
labeled "Feedback", which will be localized to your target language.
You can override this with some text of your choosing, but then you
lose the localization feature.
-->
<feedback>
<url>not-implemented.html</url>
<!-- <text>My Button Text</text> -->
</feedback>
<latex-image-preamble>
\usepackage{pgfplots}
\pgfplotsset{
every axis/.append style={
axis lines=middle,
xlabel={\(x\)},
ylabel={\(y\)},
grid = both,
}
}
</latex-image-preamble>
</docinfo>
<book xml:id="sample-ww-chapter">
<title>Integrating <webwork /> into Textbooks</title>
<subtitle>Sample Exercises</subtitle>
<frontmatter xml:id="frontmatter">
<bibinfo>
<!-- There can be several authors here -->
<author>
<personname>Robert Beezer</personname>
<department>Department of Mathematics and Computer Science</department>
<institution>
<line>University of Puget Sound</line>
<line>Tacoma, Washington, USA</line>
</institution>
</author>
<author>
<personname>Alex Jordan</personname>
<department>Department of Mathematics</department>
<institution>
<line>Portland Community College</line>
<line>Portland, Oregon, USA</line>
</institution>
</author>
<!-- Can set date manually or use the "today" element -->
<date><today /></date>
</bibinfo>
<titlepage>
<titlepage-items/>
</titlepage>
<preface>
<p>This is a sample book to demonstrate integrating <webwork /> homework problems into content authored with <pretext />. It is structured as a book whose chapters are again structured with sections (no introductions or conclusions) so that it fits Ruestone's chaper/subchapter model and can be used for testing on Runestone Academy.</p>
<p>This work was funded with grants from <url href="http://openoregon.org/">OpenOregon</url> and the <url href="http://pugetsound.edu">University of Puget Sound</url>.</p>
<p>Rob Beezer (University of Puget Sound) and Alex Jordan (Portland Community College) worked on the <pretext /> enhancements that make this possible. Mike Gage (Univeristy of Rochester), Geoff Goehle (Western Carolina University), and Alex Jordan made this possible by enhancing the <webwork /> end, and generally maintaining <webwork /> software.</p>
<p>This book assumes a mild familiarity with both <url href="https://pretextbook.org/"><pretext /></url> and <url href="http://webwork.maa.org/wiki/Main_Page"><webwork /></url>. For more information about either project, follow the links.</p>
</preface>
</frontmatter>
<chapter>
<title>Instructive Examples</title>
<section>
<title>Arithmetic</title>
<p>Some questions with quantitative answers.</p>
<exercise label="integer-addition">
<title>Adding Single-Digit Integers</title>
<introduction>
<p>A simple, but functional example to begin with. If you are just learning how to add, you can test yourself here.</p>
</introduction>
<webwork xml:id="webwork-add-numbers">
<description>
Add two positive single-digit integers.
</description>
<pg-code>
$a = random(1, 9, 1);
$b = random(1, 9, 1);
$c = Compute($a + $b);
</pg-code>
<statement>
<p>Compute the sum of <m><var name="$a" /></m> and <m><var name="$b" /></m>:</p>
<p><m><var name="$a" /> + <var name="$b" /> =</m> <var name="$c" width="5" category="integer" /></p>
</statement>
<solution>
<p><m><var name="$a" /> + <var name="$b" /> = <var name="$c" /></m>.</p>
</solution>
</webwork>
<conclusion>
<p>That was a simple problem. Let's move on.</p>
</conclusion>
</exercise>
<p>If you are familiar with <webwork />, then it may be a surprise to you to be interacting with a <webwork /> problem this way, without having logged in to <webwork />.</p>
<exercise label="integer-addition-with-seed">
<title>Declaring a Problem Seed</title>
<introduction>
<p>You can also declare a <c>seed</c> to specify a version of any problem that has randomization. Here is the same problem (<q>copied</q> in the <pretext/> source), but with a <c>seed</c> specified.</p>
</introduction>
<webwork copy="webwork-add-numbers" seed="510"/>
</exercise>
<exercise label="integer-addition-with-control-seed">
<title>Controlling Randomness</title>
<introduction>
<p>You can code your problem with randomization, but then use a specific <c>seed</c> and <webwork />'s <c>$envir{problemSeed}</c> to override that randomization for the purposes of the version that will appear in HTML and print output.</p>
</introduction>
<webwork seed="1">
<pg-code>
$a = random(1, 9, 1);
$b = random(1, 9, 1);
if ($envir{problemSeed}==1){$a=1;$b=2};
$c = Compute($a + $b);
</pg-code>
<statement>
<p>Compute the sum of <m><var name="$a" /></m> and <m><var name="$b" /></m>:</p>
<p><m><var name="$a" /> + <var name="$b" /> =</m> <var name="$c" width="5" category="integer" /></p>
</statement>
<solution>
<p><m><var name="$a" /> + <var name="$b" /> = <var name="$c" /></m>.</p>
</solution>
</webwork>
</exercise>
<exercise label="special-answer-checking">
<title>Special Answer Checking</title>
<introduction>
<p>One of the strengths of <webwork /> is its ability to give intelligent feedback for incorrect answers.<ul>
<li><p>There is general feedback for when the student's answer is in an entirely different ballpark from the correct answer. Try entering something like <q><c>y</c></q>.</p></li>
<li><p>There is general feedback for when the student's answer is not in the right form. Try entering <q><c>x^2*x^3</c></q>, which, right or wrong, is unsimplified.</p></li>
<li><p>And problems can be written to detect and respond to common mistakes. Try entering an answer where you multiply the two exponents (instead of adding them, which would be correct.)</p></li>
</ul></p>
</introduction>
<webwork>
<pg-code>
$a = random(1, 9, 1);
$b = random(1, 9, 1);
$c = $a + $b;
$expression = Formula("x^($a)*x^($b)");
Context("LimitedPolynomial-Strict");
# custom error message
Context()->{error}{msg}{"A variable can appear only once in each term of a polynomial"}
= "Your answer must be fully simplified";
$answer = Formula("x^($c)");
$product = $a*$b;
$evaluator = $answer->cmp()->withPostFilter(AnswerHints(
[Compute("x^($product)")] =>
"When multiplying terms with the same base, you do not multiply the exponents."));
</pg-code>
<statement>
<p>Use the properties of exponents to simplify <m><var name="$expression" /></m>.</p>
<instruction>To enter a power, use a <c>^</c>, as in <c>x^2</c> for <m>x^2</m>.</instruction>
<p><m><var name="$expression" />=</m> <var name="$answer" evaluator="$evaluator" width="8" category="formula" /></p>
</statement>
<solution>
<p>We <em>add</em> the exponents as follows, while including a gratuitous reference to the quadratic formula:<md>
<mrow><var name="$expression" />&=x^{<var name="$a" />+<var name="$b" />}&<xref ref="theorem-quadratic-formula" text="type-global"/></mrow>
<mrow>&=x^{<var name="$c" />}</mrow>
</md></p>
</solution>
</webwork>
</exercise>
<exercise label="using-hints">
<title>Using Hints</title>
<introduction>
<p>Hints can be inserted into exercises. Whether a hint is visible in the HTML depends on the value of <c>$showHint</c> in <c>PGcourse.pl</c> in the <webwork /> course that is hosting these exercises. How the hint is displayed in the pdf output is controlled in the usual way that an PTX hint is controlled.</p>
</introduction>
<webwork>
<pg-code>
do {
$a = list_random(2,3,5,6);
$b = random(1, 5, 1);
} until (gcd($a,$b) == 1);
$c = $a * $b**2;
Context()->flags->set(reduceConstantFunctions=>0);
$expression = Formula("sqrt($c)");
Context("LimitedRadical");
$answer = Formula("$b sqrt($a)");
</pg-code>
<statement>
<p>Simplify the expression <m><var name="$expression"/></m>.</p>
<p><m><var name="$expression"/>=</m> <var name="$answer" width="10"/></p>
</statement>
<hint>
<p>Factor the number inside the radical.</p>
</hint>
<solution>
<p><me><var name="$expression"/>=\sqrt{<var name="$b"/>^2\cdot <var name="$a"/>}=<var name="$b"/>\sqrt{<var name="$a"/>}</me></p>
</solution>
</webwork>
</exercise>
<exercise label="no-random">
<title>No Randomization</title>
<introduction>
<p>This problem has no randomization at all, not even if it were exported to be part of a problem set on a <webwork /> server. As such, it really doesn't need any lines of Perl code in its setup, so you have the option of skipping that part of the authoring process.</p>
</introduction>
<webwork>
<statement>
<p><m>1+2=</m> <var name="3" width="5" /></p>
</statement>
</webwork>
<conclusion>
<p>For more about problems that do not require any randomization, see the <url href="https://pretextbook.org/documentation.html">PTX Author Guide</url>.</p>
</conclusion>
</exercise>
<project label="copy-webwork-add-numbers">
<title>Inside a <tag>project</tag></title>
<introduction>
<p>
If you like, you can have a <webwork/> inside a PROJECT-LIKE block.
Just like with an <tag>exercise</tag>, it can be preceded with an optional <tag>introduction</tag>
and followed by an optional <tag>conclusion</tag>.
</p>
</introduction>
<webwork copy="webwork-add-numbers" seed="511"/>
</project>
</section>
<section xml:id="section-the-quadratic-formula">
<title>The Quadratic Formula</title>
<p>In the previous section, we saw relatively simple <webwork /> questions. This section demonstrates how even very complicated <webwork /> problems can still behave well.</p>
<p>Here is a theorem that gives us a formula for the solutions of a second-degree polynomial equation. Note later how the <webwork /> problem references the theorem by its number. This seemingly minor detail demonstrates the degree to which <webwork /> and <pretext /> have been integrated.</p>
<theorem xml:id="theorem-quadratic-formula">
<title>Quadratic Formula</title>
<statement>
<p>Given the second-degree polynomial equation <m>ax^2 + bx + c = 0</m>, where <m>a\neq0</m>, solutions are given by <me>x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}.</me></p>
</statement>
<proof>
<p><md>
<mrow>ax^2 + bx + c &= 0</mrow>
<mrow>ax^2 + bx &= -c</mrow>
<mrow>4ax^2 + 4bx &= -4c</mrow>
<mrow>4ax^2 + 4bx + b^2 &= b^2 - 4ac</mrow>
<mrow>(2ax + b)^2 &= b^2 - 4ac</mrow>
<mrow>2ax + b &=\pm\sqrt{b^2 - 4ac}</mrow>
<mrow>2ax &=-b\pm\sqrt{b^2 - 4ac}</mrow>
<mrow>x &=\frac{-b\pm\sqrt{b^2 - 4ac}}{2a}</mrow>
</md></p>
</proof>
</theorem>
<exercise xml:id="quadratic-equation" label="quadratic-equation">
<title>Solving Quadratic Equations</title>
<webwork xml:id="webwork-solve-quadratic">
<description>
<line>Find a quadratic equation's solutions.</line>
<line>One positive integer solution and one negative fraction solution.</line>
</description>
<pg-code>
Context("Fraction");
$a = Compute(random(2,6,1));
do {$k = Compute(random(2,6,1))} until (gcd($a,$k)==1);
$r = Compute(random(2,6,1));
$c = $k*-$r;
$b = $a*-$r+$k;
$quadratic = Formula("$a x^2 + $b x + $c")->reduce;
$x1 = Fraction($r,1);
$x2 = Fraction(-$k,$a);
Context()->flags->set(reduceConstants=>0,reduceConstantFunctions=>0);
$sol1 = Formula("(-$b+sqrt(($b)**2-4($a)($c)))/(2($a))");
$sol2 = Formula("(-$b-sqrt(($b)**2-4($a)($c)))/(2($a))");
$evaluatorfora = $a->cmp()->withPostFilter(AnswerHints(
[-$a] => "Do you have the sign correct?")
);
$evaluatorforb = $b->cmp()->withPostFilter(AnswerHints(
[-$b] => "Do you have the sign correct?")
);
$evaluatorforc = $c->cmp()->withPostFilter(AnswerHints(
[-$c] => "Do you have the sign correct?")
);
Context("FiniteSolutionSets");
$solutionset = Formula("{$x1,$x2}");
</pg-code>
<introduction>
<p>
Consider the quadratic equation <m><var name="$quadratic" /> = 0</m>.
</p>
</introduction>
<task>
<title>Identify Coefficients</title>
<statement>
<p>
Identify the coefficients for the quadratic equation
using the standard form from <xref ref="theorem-quadratic-formula" />.
</p>
<p>
<m>a=</m> <var name="$a" width="4" evaluator="$evaluatorfora"/>,
<m>b=</m> <var name="$b" width="4" evaluator="$evaluatorforb"/>,
<m>c=</m> <var name="$c" width="4" evaluator="$evaluatorforc"/>
</p>
</statement>
<solution>
<p>
Take the coefficient of <m>x^2</m> for the value of <m>a</m>,
the coefficient of <m>x</m> for <m>b</m>,
and the constant for <m>c</m>.
<em>In this case</em>, they are <m>a = <var name="$a" /></m>,
<m>b = <var name="$b" /></m>, <m>c = <var name="$c" /></m>.
</p>
</solution>
</task>
<task>
<title>Use the Quadratic Formula</title>
<statement>
<p>
Using the quadratic formula, solve the equation.
</p>
<p>
<var name="$solutionset" width="40"/>
</p>
</statement>
<solution>
<p>
Recall that the quadratic formula is given in <xref ref="theorem-quadratic-formula"/>.
</p>
<p>
You already identified <m>a = <var name="$a"/></m>,
<m>b = <var name="$b"/></m>, and <m>c = <var name="$c"/></m>,
so the results are:
<me>x = <var name="$sol1"/> = <var name="$x1"/></me>
or
<me>x = <var name="$sol2"/> = <var name="$x2"/></me>
</p>
</solution>
</task>
<conclusion>
<p>
This conclusion is just here for testing.
</p>
</conclusion>
</webwork>
</exercise>
<exercise label="nested-tasks">
<title>Nested tasks</title>
<introduction>
<p>
This exercise tests that nested tasks work.
</p>
</introduction>
<webwork>
<description>
<line>Find a quadratic equation's solutions.</line>
<line>One positive integer solution and one negative fraction solution.</line>
</description>
<pg-code>
Context("Fraction");
$a = Compute(random(2,6,1));
do {$k = Compute(random(2,6,1))} until (gcd($a,$k)==1);
$r = Compute(random(2,6,1));
$c = $k*-$r;
$b = $a*-$r+$k;
$quadratic = Formula("$a x^2 + $b x + $c")->reduce;
$x1 = Fraction($r,1);
$x2 = Fraction(-$k,$a);
Context()->flags->set(reduceConstants=>0,reduceConstantFunctions=>0);
$sol1 = Formula("(-$b+sqrt(($b)**2-4($a)($c)))/(2($a))");
$sol2 = Formula("(-$b-sqrt(($b)**2-4($a)($c)))/(2($a))");
$evaluatorfora = $a->cmp()->withPostFilter(AnswerHints(
[-$a] => "Do you have the sign correct?")
);
$evaluatorforb = $b->cmp()->withPostFilter(AnswerHints(
[-$b] => "Do you have the sign correct?")
);
$evaluatorforc = $c->cmp()->withPostFilter(AnswerHints(
[-$c] => "Do you have the sign correct?")
);
Context("FiniteSolutionSets");
$solutionset = Formula("{$x1,$x2}");
</pg-code>
<introduction>
<p>
Consider the quadratic equation <m><var name="$quadratic" /> = 0</m>.
</p>
</introduction>
<task>
<title>Identify Coefficients</title>
<introduction>
<p>
Identify the coefficients for the quadratic equation using the standard form from <xref ref="theorem-quadratic-formula"/>.
</p>
</introduction>
<task>
<statement>
<p>
<m>a=</m> <var name="$a" width="4" evaluator="$evaluatorfora"/>,
</p>
</statement>
<solution>
<p>
Take the coefficient of <m>x^2</m> for the value of <m>a</m>.
<em>In this case</em>, <m>a = <var name="$a" /></m>.
</p>
</solution>
</task>
<task>
<statement>
<p>
<m>b=</m> <var name="$b" width="4" evaluator="$evaluatorforb"/>,
</p>
</statement>
<solution>
<p>
Take the coefficient of <m>x</m> for the value of <m>b</m>.
<em>In this case</em>, <m>b = <var name="$b" /></m>.
</p>
</solution>
</task>
<task>
<statement>
<p>
<m>c=</m> <var name="$c" width="4" evaluator="$evaluatorforc"/>
</p>
</statement>
<solution>
<p>
Take the constant term for the value of <m>c</m>.
<em>In this case</em>, <m>c = <var name="$c" /></m>.
</p>
</solution>
</task>
</task>
<task>
<title>Use the Quadratic Formula</title>
<statement>
<p>
Using the quadratic formula, solve the equation.
</p>
<p>
<var name="$solutionset" width="40"/>
</p>
</statement>
<solution>
<p>
Recall that the quadratic formula is given in <xref ref="theorem-quadratic-formula"/>.
</p>
<p>
You already identified <m>a = <var name="$a"/></m>,
<m>b = <var name="$b"/></m>, and <m>c = <var name="$c"/></m>,
so the results are:
<me>x = <var name="$sol1"/> = <var name="$x1"/></me>
or
<me>x = <var name="$sol2"/> = <var name="$x2"/></me>
</p>
</solution>
</task>
<conclusion>
<p>
This conclusion is just here for testing.
</p>
</conclusion>
</webwork>
</exercise>
<exercise label="copy-with-tasks">
<title>Copy a Problem with Tasks</title>
<introduction>
<p>We are testing copying the quadratic equation problem above (<xref ref="quadratic-equation"/>), since it is structured with <tag>task</tag>, and we also provide a new seed.</p>
</introduction>
<webwork copy="webwork-solve-quadratic" seed="832"/>
</exercise>
</section>
<section>
<title>Open Problem Library</title>
<p>The <url href="http://webwork.maa.org/wiki/Open_Problem_Library">Open Problem Library</url> (OPL) is a repository of curated <webwork /> problems. At last count it had something like 30,000 problems, searchable by topic.</p>
<p>Most of the problems in this sample chapter have their source authored within the same document as the narrative. However the problems in this section are from the OPL and elsewhere on the server that is hosting the <webwork /> caclulations. For HTML output we can connect to the server and render the problem here in an interactive fashion. For print/PDF we use the <c>pretext</c> script to connect to the server to produce <pretext /> code for the problem. We can use the <c>exercise.text.*</c> switches to control which parts of the problem (statements, solutions, hints) are incorporated.</p>
<p>Problems do not have to be in the OPL to reside on a server; any problem that is accessbile from the <webwork /> course which is hosting the <webwork /> computation may be used this way.</p>
<exercise label="cylinder-volume">
<title>Cylinder Volume</title>
<introduction>
<p>This problem is one that Portland Community College has donated to the Open Problem Library.</p>
</introduction>
<webwork source="Library/PCC/BasicAlgebra/Geometry/CylinderVolume10.pg" seed="8435"/>
</exercise>
<p>This uninteresting image, authored in <latex/> syntax, is here only to make sure its automatically-assigned identifier is correct, given that the <init>OPL</init> problem just above is going to generate another image for its static representation.</p>
<image>
<latex-image>
\begin{tikzpicture}
\draw[fill=white] (0,0) ellipse (3 and 0.45);
\end{tikzpicture}
</latex-image>
</image>
<warning>
<title>Incompatible Problems</title>
<p>Not all problems that come from the OPL are compatible with <pretext />. The reasons vary. Perhaps the problem uses older <webwork /> macros that cannot be augmented to provide <pretext /> output. Perhaps the problem nests a table within a table, which <pretext /> will not support. Perhaps there are graphics in the problem that are not sized appropriately for <pretext /> output and there's nothing you can do about it. And there are many more reasons.</p>
<p>Unfortunately the variety of reasons for which a problem may be incompatible means that at present, there is no way to validate a problem automatically. Using an incompatible problem might not raise any errors at any stage of the <pretext /> processing, but large chunks of the problem may be missing, especially in print output. So we recommend that you review all output modes when using an OPL problem. Chances are that if it is behaving in print, it will behave elsewhere. But that is an unproven theory at this point.</p>
</warning>
</section>
<section>
<title>Antidifferentiation</title>
<subsection>
<title>A Few More Features</title>
<p>This subsection demonstrates a few more features.</p>
<definition xml:id="definition-antiderivative">
<title>Antiderivative of a Function</title>
<statement>
<p>Suppose that <m>f(x)</m> and <m>F(x)</m> are two functions such that <me>F^\prime(x) = f(x).</me> Then we say <m>F</m> is an <term>antiderivative</term> of <m>f</m>.</p>
</statement>
</definition>
<p>The Fundamental Theorem of Calculus in one of the high points of a course in single-variable course.</p>
<theorem xml:id="theorem-FTC">
<title>The Fundamental Theorem of Calculus</title>
<idx>Fundamental Theorem of Calculus</idx>
<statement>
<p>If <m>f(x)</m> is continuous, and the derivative of <m>F(x)</m> is <m>f(x)</m>, then <me>\definiteintegral{a}{b}{f(x)}{x}=F(b)-F(a)</me></p>
</statement>
<proof>
<p>Left to the reader.</p>
</proof>
</theorem>
<p>We state an equivalent version of the FTC, which is less-suited for computation, but which perhaps is a more interesting theoretical statement.</p>
<corollary xml:id="corollary-FTC-derivative">
<statement>
<p>Suppose <m>f(x)</m> is a continuous function. Then <men xml:id="equation-alternate-FTC">\frac{d}{dx}\definiteintegral{a}{x}{f(t)}{t}=f(x)</men></p>
</statement>
<proof xml:id="proof-FTC-corollary">
<p>We simply take the indicated derivative, applying <xref ref="theorem-FTC" /> at <xref ref="equation-use-FTC" />.<mdn>
<mrow xml:id="equation-use-FTC">\frac{d}{dx}\definiteintegral{a}{x}{f(t)}{t}&=\frac{d}{dx}\left(F(x)-F(a)\right)</mrow>
<mrow number="no">&=\frac{d}{dx}F(x)-\frac{d}{dx}F(a)</mrow>
<mrow>&=f(x)-0 = f(x)</mrow>
</mdn></p>
</proof>
</corollary>
</subsection>
<exercises>
<title><webwork /> Exercises</title>
<introduction>
<p>The first problem in this list is coming from the <webwork /> Open Problem Library. One implication of this is that we might want to provide some commentary that connects the problem to the text. The other two ask for essay answers, which would be graded by an instructor, so in the HTML output there is no opportunity to provide an answer.</p>
</introduction>
<exercise label="ww-antiderivatives">
<title>Antiderivatives</title>
<introduction>
<p>Consult <xref ref="definition-antiderivative" /> and the <xref ref="theorem-FTC" text="title" /> to assist you with the following problem.</p>
</introduction>
<webwork source="Library/ma122DB/set12/s5_4_26.pg" />
<conclusion>
<p>Unless the OPL has changed this problem out from under us, note the <q>SOLUTION</q> appearing in the solution. That is hard-coded into the OPL version of the problem. This is an example of something undesirable that may happen when using OPL problems that were not originally written with <pretext /> in mind.</p>
</conclusion>
</exercise>
<exercise label="ww-discuss-always-antiderivative">
<title>Every Continuous Function has an Antiderivative</title>
<introduction>
<p><webwork /> problems can allow for open-ended essay responses that are intended to be assessed later by the instructor. For anonymous access, no text field is provided. But if this problem were used within <webwork /> as part of a homework set, users could submit an answer.</p>
</introduction>
<webwork>
<statement>
<p>Explain how we can use <xref ref="corollary-FTC-derivative" /> to say that every continuous function <em>always</em> has a derivative. (And we will demonstrate here that you can use a macro from <c>docinfo</c>: <m>\definiteintegral{1}{2}{\frac{1}{x}}{x}=\ln(2)</m>. It will work in the <webwork /> problem, regardless of whether you are using images, MathJax, or hardcopy.)</p>
<p><var form="essay" /></p>
</statement>
</webwork>
</exercise>
<exercise label="ww-discuss-inverse-processes">
<title>Inverse Processes</title>
<webwork>
<statement>
<p><q>Differentiation and integration are inverse processes.</q> Cite <alert>specific results</alert> from this section in an explanation of how they justify this (somewhat imprecise) claim.</p>
<p><var form="essay" width="40"/></p>
</statement>
</webwork>
</exercise>
<exercisegroup cols="2">
<introduction>
<p>
For the given function <m>f</m>, find <m>\indefiniteintegral{f(x)}{x}</m>.
</p>
<p>
Note that these common instructions are phrased in such a way
that they would read well if they were applied to only one exercise at a time.
That will happen if these exercises are exported as <c>.pg</c> files,
for example to be used in online homework from a <webwork/> server.
</p>
</introduction>
<exercise>
<webwork>
<pg-code>
$answer = FormulaUpToConstant("-cos(x)");
</pg-code>
<statement>
<p>
<m>f(x)=\sin(x)</m>
</p>
<p>
<var name="$answer" width="20"/>
</p>
</statement>
</webwork>
</exercise>
<exercise>
<webwork>
<pg-code>
$answer = FormulaUpToConstant("e^x");
</pg-code>
<statement>
<p>
<m>f(x)=e^x</m>
</p>
<p>
<var name="$answer" width="20"/>
</p>
</statement>
</webwork>
</exercise>
</exercisegroup>
<exercise label="ww-use-the-definition-of-the-derivative">
<title>Show Your Work</title>
<introduction>
<p>
Sometimes you would like a student to give a <q>simple</q> answer that <webwork/> can automatically assess,
but you would also like the student to show their work or reasoning.
Perhaps there is a particular method that you want to see the student use to find the answer.
So you have a regular answer blank and also an essay blank.
For practical reasons, you may wish to use the same problem on your <webwork/> server, but omit the essay part.
For example, if you want to use that problem but leave out the manual grading.
For this, <webwork/> has the <c>explanation_box</c> tool, demonstrated here.
</p>
</introduction>
<webwork>
<pg-code>
$answer = Formula('2x');
$showwork = '[@ explanation_box(message => "Show your work.") @]*';
</pg-code>
<statement>
<p>
Use the definition of the derivative to find <m>\frac{d}{dx}x^2</m>.
</p>
<p>
<var name="$answer" width="10"/>
</p>
<p>
<var name="$showwork" data="pgml"/>
</p>
</statement>
</webwork>
</exercise>
</exercises>
</section>
<section>
<title>Math Content</title>
<p>
This section helps with testing aspects of math content.
</p>
<exercise label="math-and-alignment">
<title>Math Elements and Alignment</title>
<introduction>
<p>
In this exercise we demonstrate the allowed math elements: <tag>m</tag>, <tag>me</tag>, and <tag>md</tag>.
The last of these may have attribute <attr>alignment</attr> with options <c>gather</c>, <c>align</c>, or <c>alignat</c>.
The first two are used by default, depending on if you have <c>&</c> or <c>\amp</c> in your math.
</p>
</introduction>
<webwork>
<statement>
<p>
If <m>a=5</m> and <m>b=12</m>, then <me>a^2+b^2=13^2</me>.
</p>
<p>
Here, we solve an equation.
<md>
<mrow>2x+1 \amp= 3</mrow>
<mrow>2x \amp= 2</mrow>
<mrow>x \amp= 1</mrow>
</md>
Here we have a three-way inequality to solve.
<md>
<mrow>1 \lt 2x+1 \lt 3</mrow>
<mrow>0 \lt 2x \lt 2</mrow>
<mrow>0 \lt x \lt 1</mrow>
</md>
And here, we see a system of equations.
<md alignment="alignat">
<mrow>2x + 2y \amp {}+{} \amp z \amp {}={} \amp 10</mrow>
<mrow>y \amp {}-{} \amp 4z \amp {}={} \amp 9</mrow>
<mrow>\amp\amp 3z \amp {}={} \amp -6</mrow>
</md>
</p>
</statement>
</webwork>
</exercise>
<exercise label="intertext">
<title>Intertext</title>
<introduction>
<p>
With an <tag>md</tag> you might have <tag>intertext</tag> among the rows.
</p>
</introduction>
<webwork>
<statement>
<p>
Here, we solve an equation.
<md>
<mrow>2x+1 \amp= 3</mrow>
<intertext> Now subtract <m>1</m> from each side.</intertext>
<mrow>2x \amp= 2</mrow>
<intertext> Now divide by <m>2</m> on each side.</intertext>
<mrow>x \amp= 1</mrow>
</md>
</p>
<p>
We should also test when the <tag>md</tag> is within a list.
<ol>
<li>
<p>
Start a list.
</p>
</li>
<li>
<p>
<md>
<mrow>2x+1 \amp= 3</mrow>
<intertext> Now subtract <m>1</m> from each side.</intertext>
<mrow>2x \amp= 2</mrow>
<intertext> Now divide by <m>2</m> on each side.</intertext>
<mrow>x \amp= 1</mrow>
</md>
</p>
</li>
<li>
<p>
Still in the list?
</p>
</li>
</ol>
</p>
</statement>
</webwork>
</exercise>
</section>
<section>
<title>Multiple Choice</title>
<p>While free-response questions are generally preferred, sometimes the nature of a question lends itself to multiple choice.</p>
<exercise label="multiple-choice">
<title>Drop-down/Popup</title>
<introduction>
<p>Note also that the solution to this problem uses an external link.</p>
</introduction>
<webwork>
<pg-code>
$rational = PopUp(
["?","is","is not",],
"is not",
);
</pg-code>
<statement>
<p>The number <m>\sqrt{2}</m> <var name="$rational" form="popup"/> rational.</p>
</statement>
<solution>
<p>If <m>\sqrt{2}</m> were rational, then <m>\sqrt{2}=\frac{p}{q}</m>, with <m>p</m> and <m>q</m> coprime. But then <m>2q^2=p^2</m>. By <url href="https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic#Canonical_representation_of_a_positive_integer">the Fundamental Theorem of Arithmetic</url>, the power of <m>2</m> dividing the left side is odd, while the power of <m>2</m> dividing the right side is even. This is a contradiction, so <m>\sqrt{2}</m> <var name="$rational"/> rational.</p>
</solution>
</webwork>
</exercise>
<exercise label="choose-one">
<title>Choose one</title>
<webwork>
<pg-code>
$theorem = RadioButtons(
["The Quadratic Formula","The Fundamental Theorem of Calculus","The Fundamental Theorem of Arithmetic","None of these"],
1, # index of correct answer; could also just be the correct answer
);
</pg-code>
<statement>
<p>Which of the following suggest that differentiation and integration are inverse processes?</p>
<p><var name="$theorem" form="buttons"/></p>
</statement>
<solution>
<p>The correct answer is <var name="$theorem"/>.</p>
</solution>
</webwork>
</exercise>
<exercise label="options-subset">
<title>Choose a Subset of Options</title>
<webwork>
<pg-code>
$checks = CheckboxList(
[
[
"${BM}e^{x^2} e^{1/x}${EM}",
"${BM}e^{x^2} e^{x^{-1}}${EM}",
"${BM}e^{ (x^3+1) / x}${EM}",
"${BM}\dfrac{ e^{x^2} }{ e^x }${EM}",
"${BM}e^{x^2} + e^{1/x}${EM}"
],
"None of the above"
],
[0, 1, 2]
);
</pg-code>
<statement>
<p>
Select all expressions that are equivalent to <m>e^{x^2 + 1/x}</m>.
There may be more than one correct answer.
</p>
<p>
<var name="$checks" form="checkboxes"/>
</p>
</statement>
<solution>
<p>
The correct answer is <var name="$checks"/>.
</p>
</solution>
</webwork>
</exercise>
<exercise label="options-subset-auto-label">
<title>Choose a Subset of Options with Automated Labeling</title>
<webwork>
<pg-code>
$checks = CheckboxList(
[
[
"${BM}e^{x^2} e^{1/x}${EM}",
"${BM}e^{x^2} e^{x^{-1}}${EM}",
"${BM}e^{ (x^3+1) / x}${EM}",
"${BM}\dfrac{ e^{x^2} }{ e^x }${EM}",
"${BM}e^{x^2} + e^{1/x}${EM}"
],
"None of the above"
],
[0, 1, 2],
labels => "ABC", # "abc", "123", "roman", "Roman"
);
</pg-code>
<statement>
<p>
Select all expressions that are equivalent to <m>e^{x^2 + 1/x}</m>.
There may be more than one correct answer.
</p>
<p>