Skip to content

VisionActivationsStore error when provided no eval dataset #126

@lowlorenz

Description

@lowlorenz
# vit_prisma.sae.training.activations_store.py
class VisionActivationsStore:
    """
    Class for streaming tokens and generating and storing activations
    while training SAEs.
    """

    def __init__(
        self,
        cfg: Any,
        model: HookedViT,
        dataset,
        create_dataloader: bool = True,
        eval_dataset = None,
        num_workers=0,
    ):
        self.cfg = cfg
        self.model = model
        self.model.to(cfg.device)
        self.dataset = dataset
        self.image_dataloader = torch.utils.data.DataLoader(self.dataset, shuffle=True, num_workers=num_workers, batch_size=self.cfg.store_batch_size, collate_fn=collate_fn, drop_last=True)
        self.image_dataloader_eval = torch.utils.data.DataLoader(eval_dataset, shuffle=True, num_workers=num_workers, batch_size=self.cfg.store_batch_size, collate_fn=collate_fn_eval, drop_last=True)

        self.image_dataloader_iter = self.get_batch_tokens_internal()
        self.image_dataloader_eval_iter = self.get_val_batch_tokens_internal()
....

This issue serves as documentation and will be addressed later today.
Ensuring that eval_dataset is properly checked will prevent runtime errors and improve the robustness of the VisionActivationsStore class.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions