forked from sejalgupta01/Image-Colourisation-Project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_colour.tex
215 lines (187 loc) · 6.2 KB
/
image_colour.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
\documentclass[12pt]{beamer}
\title[Image-Colourization]{Image Colourisation Project}
\subtitle{Jun-Aug 2020 {\textbar} WTEF Project {\textbar} Deep Learning}
\author[Team-9]{Priyansi {\textbar} Sejal Gupta {\textbar} Twisha Bansal}
\date{31 August 2020}
\usetheme{metropolis}
\usepackage{xcolor}
\usepackage{graphicx}
\usepackage{hyperref}
\graphicspath{ {/mnt/c/Users/Sejal/Desktop/project/} }
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}{Objective}
\begin{center}
\includegraphics[width=11cm]{Objective}
\end{center}
\end{frame}
\begin{frame}{Motivation}
\begin{center}
\includegraphics[width=10cm]{slide_fascination}
\end{center}
\end{frame}
\begin{frame}[standout]
\center{Our journey from being entirely clueless to completing an\\ Image Colourisation project\\ in Deep Learning}
\end{frame}
\begin{frame}{Colorful Image Colorization paper by Richard Zhang, Phillip Isola, Alexei A. Efros}
\textbf{To hallucinate the most plausible colour version rather than the ground truth}\\
\vspace{10 mm}
\pause
\textbf{Train a CNN to map from a grayscale input to a distribution over quantized
colour value outputs}
\end{frame}
\begin{frame}{Colorful Image Colorization paper by Richard Zhang, Phillip Isola, Alexei A. Efros}
\textbf{Challenges}\\
\begin{itemize}
\item Advanced Mathematics
\item Obtaining the ImageNet Dataset
\item Availability of a GPU
\item Uploading a 150 GB dataset online
\end{itemize}
\end{frame}
\begin{frame}[standout]
\center{\alert{AutoEncoders}}\\
A type of Neural Network used to learn representation for a set of data in an unsupervised manner
\end{frame}
\begin{frame}{CIELAB Colour Space}
\begin{itemize}
\item Why RGB will not work\\~
\end{itemize}
\end{frame}
\begin{frame}[standout]
\begin{columns}
\begin{column}{0.5\textwidth}
\center{\alert{\textbf{Grayscale}}}\\
\center{Only 1 channel}
\end{column}
\begin{column}{0.5\textwidth}
\center{\alert{\textbf{RGB}}}\\
\center{3 channels}
\end{column}
\end{columns}
\pause
\vspace{5 mm}
\center{\alert{\textbf{Grayscale $\Rightarrow$ RGB}}}
\center{3 channels, but R==G==B}
\end{frame}
{\setbeamercolor{background canvas}{bg=gray}
\begin{frame}
\end{frame}
}
\begin{frame}{CIELAB Colour Space}
\begin{itemize}
\item L channel: Lightness
\item A channel: green to red
\item B channel: blue to yellow
\end{itemize}
\end{frame}
\begin{frame}{Technology Stack}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{itemize}
\item \textbf{Building the Model}\\
- PyTorch\\
\item \textbf{Datasets and Version Control}\\
- Kaggle\\
\end{itemize}
\end{column}
\begin{column}{0.5\textwidth}
\begin{itemize}
\item \textbf{Web App}\\
- Streamlit\\
\item \textbf{Cloud Platform}\\
- Heroku
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Model}
\begin{center}
\includegraphics[width=11cm]{Model}
\end{center}
\end{frame}
\begin{frame}{Model}
\begin{itemize}
\item Loss Function: \textbf{MSE Loss}
\item Optimiser: \textbf{Adam}
\item Range of Learning Rates used for training: \textbf{1e-3 - 1e-6}
\end{itemize}
\end{frame}
\begin{frame}{Challenges}
\begin{itemize}
\item Tensor and Numpy Array interconvertability
\item Interoperatability between CPU and CUDA
\item Runtime disconnects
\item Signal being killed due to memory usage
\pause
\item No Mathematical Parameters like Accuracy to check results
\end{itemize}
\end{frame}
\begin{frame}{Datasets}
Trained on approximately 313K images
\begin{itemize}
\item \href{https://www.kaggle.com/lijiyu/imagenet}{ImageNet(50K Images)}\\
\item \href{https://www.kaggle.com/hsankesara/flickr-image-dataset}{Flickr}\\
\item \href{https://www.kaggle.com/huseynguliyev/landscape-classification}{Landscape Classification}\\
\item \href{https://www.kaggle.com/nitishabharathi/scene-classification}{Scene Classification}\\
\item \href{https://www.kaggle.com/moltean/fruits}{Fruits 360}\\
\item \href{https://www.kaggle.com/chrisfilo/fruit-recognition}{Fruits Recognition}\\
\item \href{https://www.kaggle.com/salil007/caavo}{Clothes Classification}\\
\end{itemize}
\end{frame}
\begin{frame}{Results: Pass}
\includegraphics[width=11cm]{pass}
\end{frame}
\begin{frame}{Results: Fail}
\includegraphics[width=11cm]{fail}
\end{frame}
\begin{frame}{Web Application and Deployment}
\textbf{Web App:}\\
\begin{itemize}
\item Made with Streamlit\\
\item Why Streamlit:\\
\begin{enumerate}
\item Reducing app code to Python scripts
\item Treating widgets like variables
\item Reusing data with memoization
\end{enumerate}
\end{itemize}
\textbf{Deployment:}
\begin{itemize}
\item Heroku as the cloud platform
\end{itemize}
\end{frame}
\begin{frame}{Further Improvements}
\begin{itemize}
\item \textbf{Model}
\begin{enumerate}
\item Generalising on more themes
\item Automating the classification of themes
\item Incorporating Data augmentation
\item Compatibility with all image sizes
\end{enumerate}
\item \textbf{Web App}
\begin{enumerate}
\item Using Flask along with HTML/CSS/JS to customize better
\end{enumerate}
\end{itemize}
\end{frame}
\begin{frame}{References}
\begin{enumerate}
\item Colorful Image Colorization paper by Richard Zhang, Phillip Isola, Alexei A. Efros: \textcolor{cyan}{\href{https://arxiv.org/pdf/1603.08511.pdf}{https://arxiv.org/pdf/1603.08511.pdf}}
\item Applications of AutoEncoders - Image Colourisation: \textcolor{cyan}{\href{https://github.com/bnsreenu/python\_for\_microscopists}{https://github.com/bnsreenu/python\_for\_microscopists}}
\end{enumerate}
\end{frame}
\begin{frame}{Our Project}
\begin{itemize}
\item Web Application: \textcolor{cyan}{\href{https://image-colouriser-streamlit.herokuapp.com/}{https://image-colouriser-streamlit.herokuapp.com/}}
\item Gitlab: \textcolor{cyan}{\href{https://gitlab.com/twishabansal/image-colourisation}{https://gitlab.com/twishabansal/image-colourisation}}
\item Kaggle Notebook: \textcolor{cyan}{\href{https://www.kaggle.com/sejalgupta01/image-colorization-starter}{https://www.kaggle.com/sejalgupta01/image-colorization-starter}}
\end{itemize}
\end{frame}
\begin{frame}[standout]
\center{Questions and Suggestions?}
\end{frame}
\end{document}