|
| 1 | +using Pumas |
| 2 | +using DataFrames |
| 3 | +using CSV |
| 4 | + |
| 5 | +# CP |
| 6 | +poppk2cpt_cp = @model begin |
| 7 | + @param begin |
| 8 | + tvcl ~ LogNormal(log(10), 0.25) |
| 9 | + tvq ~ LogNormal(log(15), 0.5) |
| 10 | + tvvc ~ LogNormal(log(35), 0.25) |
| 11 | + tvvp ~ LogNormal(log(105), 0.5) |
| 12 | + tvka ~ LogNormal(log(2.5), 1) |
| 13 | + σ ~ truncated(Cauchy(0, 5), 0, Inf) |
| 14 | + C ~ LKJCholesky(5, 1.0) |
| 15 | + ω ∈ Constrained( |
| 16 | + MvNormal(zeros(5), Diagonal(0.4^2 * ones(5))), |
| 17 | + lower=zeros(5), |
| 18 | + upper=fill(Inf, 5), |
| 19 | + init=ones(5), |
| 20 | + ) |
| 21 | + end |
| 22 | + |
| 23 | + @random begin |
| 24 | + η ~ MvNormal(ω .* C .* ω') |
| 25 | + end |
| 26 | +
|
| 27 | + @pre begin |
| 28 | + # PK parameters |
| 29 | + CL = tvcl * exp(η[1]) |
| 30 | + Q = tvq * exp(η[2]) |
| 31 | + Vc = tvvc * exp(η[3]) |
| 32 | + Vp = tvvp * exp(η[4]) |
| 33 | + Ka = tvka * exp(η[5]) |
| 34 | + end |
| 35 | +
|
| 36 | + @dynamics begin |
| 37 | + Depot' = -Ka * Depot |
| 38 | + Central' = Ka * Depot - (CL + Q) / Vc * Central + Q / Vp * Peripheral |
| 39 | + Peripheral' = Q / Vc * Central - Q / Vp * Peripheral |
| 40 | + end |
| 41 | + |
| 42 | + @derived begin |
| 43 | + cp := @. Central / Vc |
| 44 | + dv ~ @. LogNormal(log(cp), σ) |
| 45 | + end |
| 46 | +end |
| 47 | + |
| 48 | +# NCP |
| 49 | +poppk2cpt_ncp = @model begin |
| 50 | + @param begin |
| 51 | + tvcl ~ LogNormal(log(10), 0.25) |
| 52 | + tvq ~ LogNormal(log(15), 0.5) |
| 53 | + tvvc ~ LogNormal(log(35), 0.25) |
| 54 | + tvvp ~ LogNormal(log(105), 0.5) |
| 55 | + tvka ~ LogNormal(log(2.5), 1) |
| 56 | + σ ~ truncated(Cauchy(0, 5), 0, Inf) |
| 57 | + C ~ LKJCholesky(5, 1.0) |
| 58 | + ω ∈ Constrained( |
| 59 | + MvNormal(zeros(5), Diagonal(0.4^2 * ones(5))), |
| 60 | + lower=zeros(5), |
| 61 | + upper=fill(Inf, 5), |
| 62 | + init=ones(5), |
| 63 | + ) |
| 64 | + end |
| 65 | + |
| 66 | + @random begin |
| 67 | + ηstd ~ MvNormal(I(5)) |
| 68 | + end |
| 69 | + |
| 70 | + @pre begin |
| 71 | + # compute the η from the ηstd |
| 72 | + # using lower Cholesky triangular matrix |
| 73 | + η = ω .* (getchol(C).L * ηstd) |
| 74 | + |
| 75 | + # PK parameters |
| 76 | + CL = tvcl * exp(η[1]) |
| 77 | + Q = tvq * exp(η[2]) |
| 78 | + Vc = tvvc * exp(η[3]) |
| 79 | + Vp = tvvp * exp(η[4]) |
| 80 | + Ka = tvka * exp(η[5]) |
| 81 | + end |
| 82 | + |
| 83 | + @dynamics begin |
| 84 | + Depot' = -Ka * Depot |
| 85 | + Central' = Ka * Depot - (CL + Q) / Vc * Central + Q / Vp * Peripheral |
| 86 | + Peripheral' = Q / Vc * Central - Q / Vp * Peripheral |
| 87 | + end |
| 88 | +
|
| 89 | + @derived begin |
| 90 | + cp := @. Central / Vc |
| 91 | + dv ~ @. LogNormal(log(cp), σ) |
| 92 | + end |
| 93 | +end |
| 94 | +
|
| 95 | +df = CSV.read("data/poppk2cpt.csv", DataFrame) |
| 96 | +pop = read_pumas(df) |
| 97 | +
|
| 98 | +params = (; |
| 99 | + tvcl=9.5, |
| 100 | + tvq=19, |
| 101 | + tvvc=67, |
| 102 | + tvvp=102, |
| 103 | + tvka=1.2, |
| 104 | + σ=0.83, |
| 105 | + C=float.(Matrix(I(5))), |
| 106 | + ω=[0.8, 0.1, 1.8, 2.0, 0.5] |
| 107 | +) |
| 108 | +
|
| 109 | +# just 2 subjects |
| 110 | +poppk2cpt_cp_fit = fit( |
| 111 | + poppk2cpt_cp, |
| 112 | + pop[1:2], |
| 113 | + params, |
| 114 | + Pumas.BayesMCMC( |
| 115 | + nsamples=200, |
| 116 | + nadapts=100, |
| 117 | + target_accept=0.6, |
| 118 | + ) |
| 119 | +) |
| 120 | +
|
| 121 | +poppk2cpt_ncp_fit = fit( |
| 122 | + poppk2cpt_ncp, |
| 123 | + pop[1:2], |
| 124 | + params, |
| 125 | + Pumas.BayesMCMC( |
| 126 | + nsamples=200, |
| 127 | + nadapts=100, |
| 128 | + target_accept=0.6, |
| 129 | + ) |
| 130 | +) |
| 131 | +
|
| 132 | +poppk2cpt_cp_tfit = Pumas.truncate(poppk2cpt_cp_fit; burnin=100) |
| 133 | +poppk2cpt_ncp_tfit = Pumas.truncate(poppk2cpt_ncp_fit; burnin=100) |
| 134 | +
|
| 135 | +# comparing ESS |
| 136 | +ess_cp = mean(ess(poppk2cpt_cp_tfit)) |
| 137 | +ess_ncp = mean(ess(poppk2cpt_ncp_tfit)) |
| 138 | +ess_ncp / ess_cp |
| 139 | +
|
| 140 | +# comparing Rhat |
| 141 | +rhat_cp = mean(rhat(poppk2cpt_cp_tfit)) |
| 142 | +rhat_ncp = mean(rhat(poppk2cpt_ncp_tfit)) |
| 143 | +rhat_cp / rhat_ncp |
0 commit comments