Skip to content

Beta dependence in transverse resistive wall wake #158

@DavidPost-1

Description

@DavidPost-1

Lines 614-619 of wakes.py define the transverse resistive wall wake:

def wake(dt, *args, **kwargs):
    y = (Yokoya_factor * (np.sign(dt + np.abs(self.dt_min)) - 1) / 2. *
            np.sqrt(kwargs['beta']) * self.resistive_wall_length / np.pi /
            self.pipe_radius**3 * np.sqrt(-mu_r / np.pi /
            self.conductivity / dt.clip(max=-abs(self.dt_min))))*np.sqrt(Z_0*c)
    return y

As I understand it, for a Yokoya factor of 1 this equivalent to

$$ W_{1, \perp}^{\textrm{PyHT}}(z) = \frac{\textrm{sgn}(z)-1}{2} \sqrt{\beta} \frac{L}{\pi b^3} \sqrt{\frac{\beta c}{\pi \sigma |z|}} \sqrt{Z_0 c} = \frac{\textrm{sgn}(z)-1}{2} \frac{L}{b^3} \sqrt{\frac{\mu_0 \beta^2 c^3}{\pi^3 \sigma}} \frac{1}{\sqrt{|z|}}. $$

The expected form of this wake can be found in Equation 130 of F. Zimmerman's paper, "Resistive-wall wake and impedance for nonultrarelativistic beams" with the $|z|^{-5/2}$ term neglected, which for reference is

$$ W_{1, \perp}(z) = \frac{\textrm{sgn}(z)-1}{2} \frac{L}{b^3} \sqrt{ \frac{\mu_0 \beta^3 c^3}{\pi^3 \sigma} } \frac{1}{\sqrt{|z|}}. $$

Compared to this, $W_{1, \perp}^{\textrm{PyHT}}(z)$ seems to be missing a factor of $\sqrt{\beta}$. Is this expected?

Many Thanks.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions