229
229
'Fischer-Tropsch'
230
230
]
231
231
232
- cost_year_2019 = ['direct firing gas' ,
233
- 'direct firing gas CC' ,
234
- 'direct firing solid fuels' ,
235
- 'direct firing solid fuels CC' ,
236
- 'industrial heat pump medium temperature' ,
237
- 'industrial heat pump high temperature' ,
238
- 'electric boiler steam' ,
239
- 'gas boiler steam' ,
240
- 'solid biomass boiler steam' ,
241
- 'solid biomass boiler steam CC' ,
242
- ]
232
+ # cost_year_2019 = ['direct firing gas',
233
+ # 'direct firing gas CC',
234
+ # 'direct firing solid fuels',
235
+ # 'direct firing solid fuels CC',
236
+ # 'industrial heat pump medium temperature',
237
+ # 'industrial heat pump high temperature',
238
+ # 'electric boiler steam',
239
+ # 'gas boiler steam',
240
+ # 'solid biomass boiler steam',
241
+ # 'solid biomass boiler steam CC',
242
+ # ]
243
243
244
244
245
245
# %% -------- FUNCTIONS ---------------------------------------------------
@@ -299,7 +299,7 @@ def get_data_DEA(tech, data_in, expectation=None):
299
299
usecols += f",{ uncrtnty_lookup [tech ]} "
300
300
301
301
302
- if (tech in cost_year_2019 ) or (tech in cost_year_2020 ) or ("renewable_fuels" in excel_file ):
302
+ if (( tech in cost_year_2019 ) or (tech in cost_year_2020 ) or ("renewable_fuels" in excel_file ) ):
303
303
skiprows = [0 ]
304
304
else :
305
305
skiprows = [0 ,1 ]
@@ -480,7 +480,8 @@ def get_data_DEA(tech, data_in, expectation=None):
480
480
df_final = df_final .ffill (axis = 1 )
481
481
482
482
df_final ["source" ] = source_dict ["DEA" ] + ", " + excel_file .replace ("inputs/" ,"" )
483
- if tech in (cost_year_2019 + cost_year_2020 ) and (tech != "electrolysis" ):
483
+ no_drop = ["electrolysis" , "direct air capture" ,"cement capture" , "biomass CHP capture" , "BtL" , "biomass boilder steam" ]
484
+ if tech in (cost_year_2019 + cost_year_2020 ) and (not tech in no_drop ):
484
485
for attr in ["investment" , "Fixed O&M" ]:
485
486
to_drop = df [df .index .str .contains (attr ) &
486
487
~ df .index .str .contains ("\(\*total\)" )].index
@@ -845,7 +846,7 @@ def clean_up_units(tech_data, value_column="", source=""):
845
846
846
847
if "methanolisation" in tech_data .index :
847
848
tech_data = tech_data .sort_index ()
848
- tech_data .loc [(' methanolisation' , ' Variable O&M' ), "unit" ] = "EUR/MWh_MeOH"
849
+ tech_data .loc [(" methanolisation" , " Variable O&M [EUR/MWh-methanol]" ), "unit" ] = "EUR/MWh_MeOH"
849
850
850
851
tech_data .unit = tech_data .unit .str .replace ("\)" , "" )
851
852
return tech_data
@@ -1292,7 +1293,7 @@ def add_carbon_capture(data, tech_data):
1292
1293
data .loc [(tech ,"capture_rate" ), 'unit' ] = 'per unit'
1293
1294
1294
1295
1295
- for tech in ['direct air capture' , ' cement capture' , 'biomass CHP capture' ]:
1296
+ for tech in ['cement capture' , 'biomass CHP capture' ]: # 'direct air capture',
1296
1297
1297
1298
data .loc [(tech ,"investment" ), years ] = tech_data .loc [(tech ,'Specific investment' ), years ].values [0 ]* 1e6
1298
1299
data .loc [(tech ,"investment" ), 'unit' ] = 'EUR/(tCO2/h)'
@@ -2348,3 +2349,9 @@ def prepare_inflation_rate(fn):
2348
2349
costs_tot .loc [:,'value' ] = round (costs_tot .value .astype (float ),
2349
2350
snakemake .config .get ("ndigits" , 2 ))
2350
2351
costs_tot .to_csv ([v for v in snakemake .output if str (year ) in v ][0 ])
2352
+
2353
+
2354
+ # minimum two things missing:
2355
+ # ('solid biomass boiler steam', 'efficiency')
2356
+ # ('BtL', 'FOM')
2357
+
0 commit comments