Skip to content

Commit 9e092c3

Browse files
committed
revert changes of energy storage database
1 parent 9bd003e commit 9e092c3

8 files changed

+2245
-2248
lines changed

outputs/costs_2020.csv

+320-320
Large diffs are not rendered by default.

outputs/costs_2025.csv

+320-320
Large diffs are not rendered by default.

outputs/costs_2030.csv

+320-320
Large diffs are not rendered by default.

outputs/costs_2035.csv

+320-320
Large diffs are not rendered by default.

outputs/costs_2040.csv

+320-320
Large diffs are not rendered by default.

outputs/costs_2045.csv

+320-320
Large diffs are not rendered by default.

outputs/costs_2050.csv

+320-320
Large diffs are not rendered by default.

scripts/compile_cost_assumptions.py

+5-8
Original file line numberDiff line numberDiff line change
@@ -1914,14 +1914,11 @@ def add_energy_storage_database(costs, data_year):
19141914
agg = df.loc[power_filter].groupby(["technology", "year"]).sum(numeric_only=True)
19151915
charger_investment_filter = charger_filter & (df.technology==tech) & (df.parameter=="investment")
19161916
discharger_investment_filter = discharger_filter & (df.technology==tech) & (df.parameter=="investment")
1917-
for a in [2021, 2030]:
1918-
df_year = (df.year == a)
1919-
df.loc[charger_investment_filter & df_year, "value"] += agg.loc[(tech, a)]/2
1920-
df.loc[discharger_investment_filter & df_year, "value"] += agg.loc[(tech, a)]/2
1921-
1922-
index = df.loc[df["technology_type"]!="nan"].index
1923-
df.technology_type.replace("nan", np.nan, inplace=True)
1924-
df.loc[index,"technology"] = df.loc[index, "technology"] + "-" + df.loc[index, "technology_type"]
1917+
df.loc[charger_investment_filter & df.year==2021, "value"] += agg.loc[(tech, 2021)]/2
1918+
df.loc[charger_investment_filter & df.year==2030, "value"] += agg.loc[(tech, 2030)]/2
1919+
df.loc[discharger_investment_filter & df.year==2021, "value"] += agg.loc[(tech, 2021)]/2
1920+
df.loc[discharger_investment_filter & df.year==2030, "value"] += agg.loc[(tech, 2030)]/2
1921+
df.loc[:,"technology"] = df["technology"] + "-" + df["technology_type"]
19251922

19261923
# aggregate technology_type and unit
19271924
df = df.groupby(["technology", "unit", "year"]).agg({

0 commit comments

Comments
 (0)