@@ -160,25 +160,25 @@ To use the GDPopt-LBB solver, define your Pyomo GDP model as usual:
160
160
:skipif: not baron_available
161
161
162
162
Required imports
163
- >>> from pyomo.environ import *
163
+ >>> import pyomo.environ as pyo
164
164
>>> from pyomo.gdp import Disjunct, Disjunction
165
165
166
166
Create a simple model
167
- >>> m = ConcreteModel()
168
- >>> m.x1 = Var(bounds = (0 ,8 ))
169
- >>> m.x2 = Var(bounds = (0 ,8 ))
170
- >>> m.obj = Objective(expr = m.x1 + m.x2, sense = minimize)
167
+ >>> m = pyo. ConcreteModel()
168
+ >>> m.x1 = pyo. Var(bounds = (0 ,8 ))
169
+ >>> m.x2 = pyo. Var(bounds = (0 ,8 ))
170
+ >>> m.obj = pyo. Objective(expr = m.x1 + m.x2, sense = pyo. minimize)
171
171
>>> m.y1 = Disjunct()
172
172
>>> m.y2 = Disjunct()
173
- >>> m.y1.c1 = Constraint(expr = m.x1 >= 2 )
174
- >>> m.y1.c2 = Constraint(expr = m.x2 >= 2 )
175
- >>> m.y2.c1 = Constraint(expr = m.x1 >= 3 )
176
- >>> m.y2.c2 = Constraint(expr = m.x2 >= 3 )
173
+ >>> m.y1.c1 = pyo. Constraint(expr = m.x1 >= 2 )
174
+ >>> m.y1.c2 = pyo. Constraint(expr = m.x2 >= 2 )
175
+ >>> m.y2.c1 = pyo. Constraint(expr = m.x1 >= 3 )
176
+ >>> m.y2.c2 = pyo. Constraint(expr = m.x2 >= 3 )
177
177
>>> m.djn = Disjunction(expr = [m.y1, m.y2])
178
178
179
179
Invoke the GDPopt-LBB solver
180
180
181
- >>> results = SolverFactory(' gdpopt.lbb' ).solve(m)
181
+ >>> results = pyo. SolverFactory(' gdpopt.lbb' ).solve(m)
182
182
WARNING: 09/06/22: The GDPopt LBB algorithm currently has known issues. Please
183
183
use the results with caution and report any bugs!
184
184
@@ -188,7 +188,7 @@ To use the GDPopt-LBB solver, define your Pyomo GDP model as usual:
188
188
>>> print (results.solver.termination_condition)
189
189
optimal
190
190
191
- >>> print ([value(m.y1.indicator_var), value(m.y2.indicator_var)])
191
+ >>> print ([pyo. value(m.y1.indicator_var), pyo. value(m.y2.indicator_var)])
192
192
[True, False]
193
193
194
194
Logic-based Discrete-Steepest Descent Algorithm (LD-SDA)
0 commit comments