|
42 | 42 |
|
43 | 43 | import inspect
|
44 | 44 |
|
45 |
| -import pyomo.contrib.parmest.utils as utils |
| 45 | +from pyomo.common import DeveloperError |
46 | 46 |
|
47 | 47 |
|
48 | 48 | class CalculationMode(Enum):
|
@@ -457,11 +457,6 @@ def _sequential_finite(self, read_output, extract_single_model, store_output):
|
457 | 457 | # add zero (dummy/placeholder) objective function
|
458 | 458 | mod.Obj = pyo.Objective(expr=0, sense=pyo.minimize)
|
459 | 459 |
|
460 |
| - # convert params to vars |
461 |
| - # print("self.param.keys():", self.param.keys()) |
462 |
| - # mod = utils.convert_params_to_vars(mod, self.param.keys(), fix_vars=True) |
463 |
| - # mod.pprint() |
464 |
| - |
465 | 460 | # solve model
|
466 | 461 | square_result = self._solve_doe(mod, fix=True)
|
467 | 462 |
|
@@ -545,9 +540,6 @@ def _direct_kaug(self):
|
545 | 540 | # add zero (dummy/placeholder) objective function
|
546 | 541 | mod.Obj = pyo.Objective(expr=0, sense=pyo.minimize)
|
547 | 542 |
|
548 |
| - # convert params to vars |
549 |
| - # mod = utils.convert_params_to_vars(mod, self.param.keys(), fix_vars=True) |
550 |
| - |
551 | 543 | # set ub and lb to parameters
|
552 | 544 | for par in self.param.keys():
|
553 | 545 | cuid = pyo.ComponentUID(par)
|
@@ -1294,8 +1286,8 @@ def trace_calc(m):
|
1294 | 1286 | return m.trace == sum(m.fim[j, j] for j in m.regression_parameters)
|
1295 | 1287 |
|
1296 | 1288 | def det_general(m):
|
1297 |
| - """Calculate determinant. Can be applied to FIM of any size. |
1298 |
| - det(A) = sum_{sigma in Sn} (sgn(sigma) * Prod_{i=1}^n a_{i,sigma_i}) |
| 1289 | + r"""Calculate determinant. Can be applied to FIM of any size. |
| 1290 | + det(A) = \sum_{\sigma in \S_n} (sgn(\sigma) * \Prod_{i=1}^n a_{i,\sigma_i}) |
1299 | 1291 | Use permutation() to get permutations, sgn() to get signature
|
1300 | 1292 | """
|
1301 | 1293 | r_list = list(range(len(m.regression_parameters)))
|
|
0 commit comments