|
| 1 | +# ___________________________________________________________________________ |
| 2 | +# |
| 3 | +# Pyomo: Python Optimization Modeling Objects |
| 4 | +# Copyright (c) 2008-2024 |
| 5 | +# National Technology and Engineering Solutions of Sandia, LLC |
| 6 | +# Under the terms of Contract DE-NA0003525 with National Technology and |
| 7 | +# Engineering Solutions of Sandia, LLC, the U.S. Government retains certain |
| 8 | +# rights in this software. |
| 9 | +# This software is distributed under the 3-clause BSD License. |
| 10 | +# ___________________________________________________________________________ |
| 11 | + |
| 12 | +from pyomo.contrib.piecewise.transform.piecewise_linear_transformation_base import ( |
| 13 | + PiecewiseLinearTransformationBase, |
| 14 | +) |
| 15 | +from pyomo.core import Constraint, Binary, Var, RangeSet, Set |
| 16 | +from pyomo.core.base import TransformationFactory |
| 17 | +from pyomo.common.errors import DeveloperError |
| 18 | +from math import ceil, log2 |
| 19 | + |
| 20 | + |
| 21 | +@TransformationFactory.register( |
| 22 | + "contrib.piecewise.disaggregated_logarithmic", |
| 23 | + doc=""" |
| 24 | + Represent a piecewise linear function "logarithmically" by using a MIP with |
| 25 | + log_2(|P|) binary decision variables. This is a direct-to-MIP transformation; |
| 26 | + GDP is not used. |
| 27 | + """, |
| 28 | +) |
| 29 | +class DisaggregatedLogarithmicInnerMIPTransformation(PiecewiseLinearTransformationBase): |
| 30 | + """ |
| 31 | + Represent a piecewise linear function "logarithmically" by using a MIP with |
| 32 | + log_2(|P|) binary decision variables, following the "disaggregated logarithmic" |
| 33 | + method from [1]. This is a direct-to-MIP transformation; GDP is not used. |
| 34 | + This method of logarithmically formulating the piecewise linear function |
| 35 | + imposes no restrictions on the family of polytopes, but we assume we have |
| 36 | + simplices in this code. |
| 37 | +
|
| 38 | + References |
| 39 | + ---------- |
| 40 | + [1] J.P. Vielma, S. Ahmed, and G. Nemhauser, "Mixed-integer models |
| 41 | + for nonseparable piecewise-linear optimization: unifying framework |
| 42 | + and extensions," Operations Research, vol. 58, no. 2, pp. 305-315, |
| 43 | + 2010. |
| 44 | + """ |
| 45 | + |
| 46 | + CONFIG = PiecewiseLinearTransformationBase.CONFIG() |
| 47 | + _transformation_name = "pw_linear_disaggregated_log" |
| 48 | + |
| 49 | + # Implement to use PiecewiseLinearTransformationBase. This function returns the Var |
| 50 | + # that replaces the transformed piecewise linear expr |
| 51 | + def _transform_pw_linear_expr(self, pw_expr, pw_linear_func, transformation_block): |
| 52 | + # Get a new Block for our transformation in transformation_block.transformed_functions, |
| 53 | + # which is a Block(Any). This is where we will put our new components. |
| 54 | + transBlock = transformation_block.transformed_functions[ |
| 55 | + len(transformation_block.transformed_functions) |
| 56 | + ] |
| 57 | + |
| 58 | + # Dimensionality of the PWLF |
| 59 | + dimension = pw_expr.nargs() |
| 60 | + transBlock.dimension_indices = RangeSet(0, dimension - 1) |
| 61 | + |
| 62 | + # Substitute Var that will hold the value of the PWLE |
| 63 | + substitute_var = transBlock.substitute_var = Var() |
| 64 | + pw_linear_func.map_transformation_var(pw_expr, substitute_var) |
| 65 | + |
| 66 | + # Bounds for the substitute_var that we will widen |
| 67 | + substitute_var_lb = float("inf") |
| 68 | + substitute_var_ub = -float("inf") |
| 69 | + |
| 70 | + # Simplices are tuples of indices of points. Give them their own indices, too |
| 71 | + simplices = pw_linear_func._simplices |
| 72 | + num_simplices = len(simplices) |
| 73 | + transBlock.simplex_indices = RangeSet(0, num_simplices - 1) |
| 74 | + # Assumption: the simplices are really full-dimensional simplices and all have the |
| 75 | + # same number of points, which is dimension + 1 |
| 76 | + transBlock.simplex_point_indices = RangeSet(0, dimension) |
| 77 | + |
| 78 | + # Enumeration of simplices: map from simplex number to simplex object |
| 79 | + idx_to_simplex = {k: v for k, v in zip(transBlock.simplex_indices, simplices)} |
| 80 | + |
| 81 | + # List of tuples of simplex indices with their linear function |
| 82 | + simplex_indices_and_lin_funcs = list( |
| 83 | + zip(transBlock.simplex_indices, pw_linear_func._linear_functions) |
| 84 | + ) |
| 85 | + |
| 86 | + # We don't seem to get a convenient opportunity later, so let's just widen |
| 87 | + # the bounds here. All we need to do is go through the corners of each simplex. |
| 88 | + for P, linear_func in simplex_indices_and_lin_funcs: |
| 89 | + for v in transBlock.simplex_point_indices: |
| 90 | + val = linear_func(*pw_linear_func._points[idx_to_simplex[P][v]]) |
| 91 | + if val < substitute_var_lb: |
| 92 | + substitute_var_lb = val |
| 93 | + if val > substitute_var_ub: |
| 94 | + substitute_var_ub = val |
| 95 | + transBlock.substitute_var.setlb(substitute_var_lb) |
| 96 | + transBlock.substitute_var.setub(substitute_var_ub) |
| 97 | + |
| 98 | + log_dimension = ceil(log2(num_simplices)) |
| 99 | + transBlock.log_simplex_indices = RangeSet(0, log_dimension - 1) |
| 100 | + transBlock.binaries = Var(transBlock.log_simplex_indices, domain=Binary) |
| 101 | + |
| 102 | + # Injective function B: \mathcal{P} -> {0,1}^ceil(log_2(|P|)) used to identify simplices |
| 103 | + # (really just polytopes are required) with binary vectors. Any injective function |
| 104 | + # is enough here. |
| 105 | + B = {} |
| 106 | + for i in transBlock.simplex_indices: |
| 107 | + # map index(P) -> corresponding vector in {0, 1}^n |
| 108 | + B[i] = self._get_binary_vector(i, log_dimension) |
| 109 | + |
| 110 | + # Build up P_0 and P_plus ahead of time. |
| 111 | + |
| 112 | + # {P \in \mathcal{P} | B(P)_l = 0} |
| 113 | + def P_0_init(m, l): |
| 114 | + return [p for p in transBlock.simplex_indices if B[p][l] == 0] |
| 115 | + |
| 116 | + transBlock.P_0 = Set(transBlock.log_simplex_indices, initialize=P_0_init) |
| 117 | + |
| 118 | + # {P \in \mathcal{P} | B(P)_l = 1} |
| 119 | + def P_plus_init(m, l): |
| 120 | + return [p for p in transBlock.simplex_indices if B[p][l] == 1] |
| 121 | + |
| 122 | + transBlock.P_plus = Set(transBlock.log_simplex_indices, initialize=P_plus_init) |
| 123 | + |
| 124 | + # The lambda variables \lambda_{P,v} are indexed by the simplex and the point in it |
| 125 | + transBlock.lambdas = Var( |
| 126 | + transBlock.simplex_indices, transBlock.simplex_point_indices, bounds=(0, 1) |
| 127 | + ) |
| 128 | + |
| 129 | + # Numbered citations are from Vielma et al 2010, Mixed-Integer Models |
| 130 | + # for Nonseparable Piecewise-Linear Optimization |
| 131 | + |
| 132 | + # Sum of all lambdas is one (6b) |
| 133 | + transBlock.convex_combo = Constraint( |
| 134 | + expr=sum( |
| 135 | + transBlock.lambdas[P, v] |
| 136 | + for P in transBlock.simplex_indices |
| 137 | + for v in transBlock.simplex_point_indices |
| 138 | + ) |
| 139 | + == 1 |
| 140 | + ) |
| 141 | + |
| 142 | + # The branching rules, establishing using the binaries that only one simplex's lambda |
| 143 | + # coefficients may be nonzero |
| 144 | + # Enabling lambdas when binaries are on |
| 145 | + @transBlock.Constraint(transBlock.log_simplex_indices) # (6c.1) |
| 146 | + def simplex_choice_1(b, l): |
| 147 | + return ( |
| 148 | + sum( |
| 149 | + transBlock.lambdas[P, v] |
| 150 | + for P in transBlock.P_plus[l] |
| 151 | + for v in transBlock.simplex_point_indices |
| 152 | + ) |
| 153 | + <= transBlock.binaries[l] |
| 154 | + ) |
| 155 | + |
| 156 | + # Disabling lambdas when binaries are on |
| 157 | + @transBlock.Constraint(transBlock.log_simplex_indices) # (6c.2) |
| 158 | + def simplex_choice_2(b, l): |
| 159 | + return ( |
| 160 | + sum( |
| 161 | + transBlock.lambdas[P, v] |
| 162 | + for P in transBlock.P_0[l] |
| 163 | + for v in transBlock.simplex_point_indices |
| 164 | + ) |
| 165 | + <= 1 - transBlock.binaries[l] |
| 166 | + ) |
| 167 | + |
| 168 | + # for i, (simplex, pwlf) in enumerate(choices): |
| 169 | + # x_i = sum(lambda_P,v v_i, P in polytopes, v in V(P)) |
| 170 | + @transBlock.Constraint(transBlock.dimension_indices) # (6a.1) |
| 171 | + def x_constraint(b, i): |
| 172 | + return pw_expr.args[i] == sum( |
| 173 | + transBlock.lambdas[P, v] |
| 174 | + * pw_linear_func._points[idx_to_simplex[P][v]][i] |
| 175 | + for P in transBlock.simplex_indices |
| 176 | + for v in transBlock.simplex_point_indices |
| 177 | + ) |
| 178 | + |
| 179 | + # Make the substitute Var equal the PWLE (6a.2) |
| 180 | + transBlock.set_substitute = Constraint( |
| 181 | + expr=substitute_var |
| 182 | + == sum( |
| 183 | + sum( |
| 184 | + transBlock.lambdas[P, v] |
| 185 | + * linear_func(*pw_linear_func._points[idx_to_simplex[P][v]]) |
| 186 | + for v in transBlock.simplex_point_indices |
| 187 | + ) |
| 188 | + for (P, linear_func) in simplex_indices_and_lin_funcs |
| 189 | + ) |
| 190 | + ) |
| 191 | + |
| 192 | + return substitute_var |
| 193 | + |
| 194 | + # Not a Gray code, just a regular binary representation |
| 195 | + # TODO test the Gray codes too |
| 196 | + def _get_binary_vector(self, num, length): |
| 197 | + if num != 0 and ceil(log2(num)) > length: |
| 198 | + raise DeveloperError("Invalid input in _get_binary_vector") |
| 199 | + # Use python's string formatting instead of bothering with modular |
| 200 | + # arithmetic. Hopefully not slow. |
| 201 | + return tuple(int(x) for x in format(num, f"0{length}b")) |
0 commit comments