-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataViz.bib
99 lines (93 loc) · 3.81 KB
/
DataViz.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
% Generated by Paperpile. Check out https://paperpile.com for more information.
% BibTeX export options can be customized via Settings -> BibTeX.
@BOOK{Wilke2019-il,
title = "Fundamentals of Data Visualization: A Primer on Making
Informative and Compelling Figures",
author = "Wilke, Claus O",
publisher = "O'Reilly Media",
edition = 1,
year = 2019,
keywords = "Module - DataViz",
language = "en",
isbn = "9781492031086"
}
@ARTICLE{Morey2016-yh,
title = "The fallacy of placing confidence in confidence intervals",
author = "Morey, Richard D and Hoekstra, Rink and Rouder, Jeffrey N and
Lee, Michael D and Wagenmakers, Eric-Jan",
abstract = "Interval estimates - estimates of parameters that include an
allowance for sampling uncertainty - have long been touted as
a key component of statistical analyses. There are several
kinds of interval estimates, but the most popular are
confidence intervals (CIs): intervals that contain the true
parameter value in some known proportion of repeated samples,
on average. The width of confidence intervals is thought to
index the precision of an estimate; CIs are thought to be a
guide to which parameter values are plausible or reasonable;
and the confidence coefficient of the interval (e.g., 95 \%)
is thought to index the plausibility that the true parameter
is included in the interval. We show in a number of examples
that CIs do not necessarily have any of these properties, and
can lead to unjustified or arbitrary inferences. For this
reason, we caution against relying upon confidence interval
theory to justify interval estimates, and suggest that other
theories of interval estimation should be used instead.",
journal = "Psychon. Bull. Rev.",
volume = 23,
number = 1,
pages = "103--123",
month = feb,
year = 2016,
url = "http://dx.doi.org/10.3758/s13423-015-0947-8",
keywords = "Bayesian inference and parameter estimation; Bayesian
statistics; Statistical inference; Statistics;Bayes
Readings;Quantitative Methods;Module - Bayes;Module - DataViz",
language = "en",
issn = "1069-9384, 1531-5320",
pmid = "26450628",
doi = "10.3758/s13423-015-0947-8",
pmc = "PMC4742505",
original_id = "51164b0f-7ced-081b-b3fd-bce8e49b8436"
}
@BOOK{Grolemund2017-jh,
title = "{R} for Data Science: Import, Tidy, Transform, Visualize, and
Model Data",
author = "Grolemund, Garrett and Wickham, Hadley",
publisher = "O'Reilly Media",
edition = 1,
year = 2017,
keywords = "Module - DataViz",
language = "en",
isbn = "9781491910399"
}
@BOOK{Healy2018-cx,
title = "Data Visualization: A Practical Introduction",
author = "Healy, Kieran",
publisher = "Princeton University Press",
edition = 1,
month = dec,
year = 2018,
keywords = "Module - DataViz",
language = "en",
isbn = "9780691181622"
}
@BOOK{Baumer2021-nm,
title = "Modern Data Science with {R}",
author = "Baumer, Benjamin S and Kaplan, Daniel T and Horton, Nicholas J",
publisher = "Chapman and Hall/CRC",
edition = 2,
month = apr,
year = 2021,
keywords = "Module - DataViz",
language = "en"
}
@BOOK{Wickham2016-tm,
title = "{ggplot2}: Elegant Graphics for Data Analysis",
author = "Wickham, Hadley",
publisher = "Springer",
edition = 2,
year = 2016,
keywords = "Module - DataViz",
language = "en",
isbn = "9783319242750"
}